VIIIth International Conference *Channeling 2018* Sept. 23-28. Ischia (NA), Italy

On the validity of the Baïer-Katkov formula

Xavier Artru Institut de Physique Nucléaire de Lyon (France)

Classical radiation formula in vacuum (1/2)

applies to :

- Synchrotron radiation in weak field,
 e.g. in undulator
- Soft Compton effect (Thompson regime)
- **Soft** coherent Bremsstrahlung ($\omega \leq \gamma m$)
- Channeling Radiation (classical trajectory .and. $\omega << \gamma m$)

Natural units systems $\hbar = c = 1$; $\alpha = 1/137$

m = 511 KeV $p^0/m \equiv \gamma = (1-v^2)^{-1/2}$ (v $\equiv \beta$) $\lambda_c = Compton wavelength = 1/m = 386 \text{ fermi}$

Classical radiation formula (2/2) :

Spectral-angular distribution : $dN(\epsilon) / (d\omega d\Omega) = (\alpha \omega / 4\pi^2) |\mathbf{a} \cdot \mathbf{\epsilon}^*|^2$

ε = photon polarization *Right circular polarization* (helicity Λ = +1) : $ε_{(+)} = (1, i) /\sqrt{2}$ *Left circular polarization* (helicity Λ = -1) : $ε_{(-)} = (1, -i) /\sqrt{2}$

$$\mathbf{a} = \int \exp(\mathbf{i}\phi) \, \mathrm{d}\mathbf{r}_{\perp}$$
;

 $\phi = k \cdot X$

4-vectors : $X = (t, \mathbf{r})$ $k = (\omega, \mathbf{k})$ $p = (\gamma m, \gamma m \mathbf{v})$

 \mathbf{r}_{\perp} = perpendicular to \mathbf{k} ; \mathbf{v}_{\perp} = d \mathbf{r}_{\perp} /dt

Ultrarelativistic approximation : $\phi = (\omega/2) \int^{t} (\gamma^{-2} + \mathbf{v}_{\perp}^{2}) dt'$

The classical theory is **Spin-blind** and without recoil effect

Recoil and spin effects

... become important when $\omega/\gamma m$ is not small. It can happen in :

- fast varying field: $|F|^{-1} |dF/dt| \sim m$ in the instantaneous electron frame, where $F = F^{\mu\nu} = {\mathbf{E}, \mathbf{B}}$. Examples:
 - hard Compton effect ($p.k \sim > m^2$)
 - bremstrahlung at impact parameter $b < \gamma \lambda_C$
- Strong Field, i.e., $|F| \sim E_{crit} = m^2/e = 1,32 \ 10^{18} \ volt/m$ in the electron frame. Examples:
 - near neutron stars,
 - in channeling of electrons of energy ~> 100 GeV
 - in very intense laser fields.

The "magic" Baier-Katkov formula (1/5)

... is a modification of the classical radiation formula which takes **recoil** and **spin** effects into account.

Using crossing symmetry, it can also apply to pair creation in strong field.

The "magic" Baier-Katkov formula (2/5)

1) Recoil effect : replace
$$\phi = k \cdot X$$

by $\phi' = (\gamma/\gamma') k \cdot X$

2) Spin dependence : replace $\mathbf{a} \cdot \mathbf{e}^*$ by $\langle \lambda' | a_{\Lambda} | \lambda \rangle$ $\lambda, \lambda' =$ electron helicities = ±1/2 Λ = photon helicity.

After summation over spins :

 $\begin{aligned} d\mathsf{N} / (d\omega d\Omega) &= (\alpha \omega / 8\pi^2) \left\{ (1 + \gamma^2 / \gamma'^2) | \int \exp(i\phi') d\mathbf{r}_{\perp} |^2 \\ &+ (1/\gamma' - 1/\gamma)^2 | \int \exp(i\phi') dt |^2 \right\} \end{aligned}$

The "magic" Baier-Katkov formula (3/5)

Helicity non-flip amplitudes

$$\langle +|a_{\perp}|+\rangle = \int \exp(i\phi') (dx+idy) /\sqrt{2}$$

 $\langle -|a_{+}|-\rangle = \int \exp(i\phi') (dx-idy) /\sqrt{2}$ = as classical, but with ϕ'

Helicity-flip amplitudes

 $\langle -|a_+|+\rangle = -\langle +|a_-|-\rangle = 2^{-1/2} (1/\gamma' - 1/\gamma) \int \exp(i\phi') dt$ $\langle -|a_-|+\rangle = -\langle +|a_+|-\rangle = 0$ (too much imbalance of helicity !)

The "magic" B-K formula (4/5)

« magic » because it does not depend on the final electron trajectory !

... whereas the quantum formula involves *both* the initial and final wave functions :

$$\langle f|a|i \rangle = \int d^3 \mathbf{r} \psi_f^*(\mathbf{r}) \mathbf{\epsilon}^* \cdot \mathbf{\alpha} \psi_i(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$$

The "magic" B-K formula (5/5)

Should we conclude that the full information about the final trajectory is contained in the initial one ?

- Does the B-K formula becomes exact when the field is invariant along a plane ?

Plane wave external field

Then the Dirac wave function of the electron has a simple form, found by Volkov

Plane wave paket - Volkov wave function

Representation where α_z and Σ_z are diagonal: $\psi = (\chi, \xi) = (\chi_+, \chi_-, \xi_+, \xi_-)$

χ = component of α_z = +1	
ξ = component of α_z = -1	

+ or – is the sign of the *helicity*
$$\Sigma_z/2$$

Light-like coordinates: $X = (\eta, \mathbf{r}_T, X^-)$ with $\eta = X^+ = t+z$ and $X^- = t-z$

Potential 4-vector of the wave packet: $(0, \mathbf{A}_{T}(\eta), 0)$ *Mechanical* $\mathbf{p}_{T} = \gamma m \mathbf{v}_{T}$ *Canonical* $\mathbf{P}_{T} = \mathbf{p}_{T} - e\mathbf{A}_{T}$ $P^{+} = p^{+}; P^{-} = p^{-}$ *Mass-shell condition:* $p^{+}p^{-} = m^{2} + \mathbf{p}_{T}^{2}$

Eigenstates of P^+ and P_T :

$$\Psi(X) = \exp(-i p^{+}X^{-}/2 + i \mathbf{P}_{T} \cdot \mathbf{X}_{T}) \psi(\eta)$$
$$\mathbf{p}_{T}(\eta) = \mathbf{P}_{T} + e\mathbf{A}_{T}(\eta)$$
$$p^{-}(\eta) = [m^{2} + \mathbf{p}_{T}^{-2}(\eta)]/p^{+}$$

Solution of the Dirac equation:

 $χ(η) = χ(-∞) exp{ (-i/2) ∫^η_{-∞} dη' p⁻(η') }$ ξ(η) = (1/p⁺) [m+**σ.p**_T(η) σ_z] χ(η)

Volkov transition amplitude – 1) the phase factor

Photon momentum $k = (k^+, \mathbf{k}_{T}, k^-)$. Frame where $\mathbf{k}_{T} = 0$, $k^- = 0$ Mom. conservation P' + k = P $p'^+ = p^+ k^+$; $\mathbf{P'}_{T} = \mathbf{P}_{T}$; $\mathbf{p'}_{T}(\eta) = \mathbf{p}_{T}(\eta)$

$$\begin{aligned} \langle \mathbf{f} | \mathbf{a} | \mathbf{i} \rangle &= \int d\mathbf{\eta} \ \psi_{\mathbf{f}}^{*}(\mathbf{\eta}) \ \boldsymbol{\epsilon}^{*} \cdot \boldsymbol{\alpha} \ \psi_{\mathbf{i}}(\mathbf{\eta}) \ \exp(\mathbf{i} \mathbf{k}^{-} \mathbf{\eta}/2) \\ &= \int d\mathbf{\eta} \ \exp[\mathbf{i} \phi'(\mathbf{\eta}) \] \quad \langle \lambda_{\mathbf{f}} | \mathbf{Q}(\boldsymbol{\epsilon}, \mathbf{\eta}) | \lambda_{\mathbf{i}} \rangle , \end{aligned}$$

The phase factor

 $\phi'(\eta) = (p^+/p'^+) \int_{-\infty}^{\eta} d\eta'/2 [m^2 + \mathbf{p}_T^2(\eta)] / (p^+)^2$

equals the Baïer-Katkov phase in the ultra-relativistic limit, $\omega dt \Rightarrow k^+ d\eta'/2 ; \gamma \Rightarrow p^+/(2m) ; \mathbf{v}_T(t) \Rightarrow 2 \mathbf{p}_T(\eta)/p^+ ; \gamma/\gamma' \Rightarrow p^+/p'$ Transition amplitude – 2) the spin factor $\langle \lambda_f | Q(\boldsymbol{\epsilon}, \eta) | \lambda_i \rangle$

helicity $\lambda = \sigma_z / 2$ applied to the $\alpha_z = +1$ component χ

```
\langle + |Q(-,\eta)| + \rangle = \sqrt{2} \left[ p_x(\eta) + i p_y(\eta) \right] / p^+
```

 $\langle -|Q(\textbf{-},\eta)|-\rangle = (p^+/p'^+) \langle +|Q(\textbf{-},\eta)|+\rangle$

 $\langle -|Q(\mathbf{+},\eta)|+\rangle = \sqrt{2} \text{ m} (1/p'' - 1/p')$

 $\langle -|Q(\textbf{-},\eta)|+\rangle = 0$, etc.

Recall Baïer-Katkov :

 $\begin{array}{l} \left\langle +|a_{-}|+\right\rangle = \int \exp(i\phi') \left(dx+idy\right)/\sqrt{2} \\ \left\langle -|a_{-}|-\right\rangle \ = \left(\gamma/\gamma'\right)\left\langle +|a_{-}|+\right\rangle \\ \left\langle -|a_{+}|+\right\rangle = 2^{-1/2}\left(1/\gamma'-1/\gamma\right)\int \exp(i\phi') dt \\ \left\langle -|a_{-}|+\right\rangle = 0 \end{array} \right.$

Application of the B-K formula

- 'Exact' case : Compton back scattering on laser field
- Approximate cases : when the electron is ultrarelativistic so that in its frame the field of the radiator is nearly equivalent to a plane electromagnetic wave
- (Weizsäcker-Williams approximation). Examples:
- > Undulator radiation
- > Synchrotron radiation
- > Coherent bremsstrahlung on planes
- > Bremsstrahlung on a single atom

In these cases, the Baïer-Katkov formula can also be obtained by the WKBJ method.

What about channeling radiation ?

B-K formula in channeling radiation

B

Α

In channeling, the potential strongly depends on the transverse coordinates. The B-K formula is *a priori* inapplicable.

The spectral lines predicted by the B-K formula do not coincide with the ones of radiative transition between transverse states (X.A. in Channeling 2014).

Radiative capture :

above-barrier state => channeled state is certainly a bad case for the B-K formula: the final motion is too different from the initial one.

Nevertheless, B-K formula is usefull in channeling radiation, if one applies it by small parts of the trajectory, like **AB** here (completed by the 2 semi-infinite lines).

It makes the spectrum continuous, but provides an average energy loss. This is the method used in the Fortan program FOT.

----- Thank you ! ------

Fine test of the B-K formula in channeling radiation

- Assume periodic trajectories and compare the spectral lines predicted by B-K with "exact" spectral lines.

$$(\omega/\gamma\gamma' + \omega\theta^2)/2 = E_T - E'_T$$
 (1)

B-K formula for the ν^{th} harmonic

$$(\omega/\gamma\gamma' + \omega'\theta^2)/2 = 2\nu\pi/L - \omega'\langle \mathbf{v}_T^2 \rangle/2$$
 (2)

v = n - n' = decrease of transverse quantum number n is given by the Bohr quantization rule $L \cdot E \cdot \langle \mathbf{v}_T^2 \rangle = 2n\pi$ \Rightarrow The R-H-S of (1) and (2) are equal for $\omega << E$.

 \Rightarrow B-K formula does not give the exact detailed spectrum in the hard region of CR.

VIIIth International Conference *Channeling 2018* Sept. 23-28. Ischia (NA), Italy

Quantum versus classical approach of dechanneling and other incoherent processes at high energy in aligned crystals

Xavier Artru Institut de Physique Nucléaire de Lyon (France) (Axial channeling)

Continuous Lindhard potential: $V_{Lin}(\mathbf{r}_T) = \langle \langle V(t, \mathbf{r}_T, z) \rangle_t \rangle_z$

created by the charge density $\rho_{\text{Lin}}(\mathbf{r}_{\text{T}}) = \langle \rho(t, \mathbf{r}_{\text{T}}, z) \rangle_{t} \rangle_{z}$

V_{Lin} conserves :
> the projectile energy ε,
> the longitudinal momentum p_z

> the transverse energy $\epsilon_T = \mathbf{p}_T^2/(2\epsilon) - e V_{Lin}(\mathbf{r}_T)$

Residual potential:

$$\delta V(t, \mathbf{r}_T, z) = V(t, \mathbf{r}_T, z) - V_{Lin}(\mathbf{r}_T)$$

·_τ) →

Residual charge density $\delta \rho(t, \mathbf{r}_T, z) = \rho(t, \mathbf{r}_T, z) - \rho_{\text{Lin}}(\mathbf{r}_T)$

Frozen approximation:

Neglect the t-dependence of $\delta\rho$ and δV :

 $\delta \rho(\mathbf{r}_{T}, z) = \delta \rho(t, \mathbf{r}_{T}, z)_{t=0}$

Justification : the projectile moves much faster than the crystal constituents • Breaks ϵ , p_z and ϵ_{T} .

• Responsible for *dechanneling* and *incoherent bremsstrahlung*.

Three contributions to $\delta \rho$ and δV (Beloshitsky, ...)

- 1) periodic modulation in z (negligible effects)
- 2) vibrations of the atomic chain (phonons)
- 3) electron motion inside the atoms

$$\delta V = \delta V_{period} + \delta V_A + \delta V_e$$

Residual potential δV_A from the vibrations of the atomic chain

- It is generally dissymmetric
- zero mean value : $\int d^3 \mathbf{r} \, \delta V_{\Delta} = 0$

Residual potential from the kth electron of an atom

- δV_k has the Coulomb peak in -e/R with R = r - r_k, but not the Coulomb tail.
- It has a dipole tail in R⁻²
- Its shape depends on the frozen position r_k of the electron in the atom
- It is generally dissymmetric

Monte Carlo simulation - 1

Semi-quantum method :

Represent the effect of δV by *kinks* of the trajectory, where \mathbf{p}_{T} receives a sudden jump \mathbf{q} (= \mathbf{q}_{T})

- between two kinks: classical motion in $V_{\mbox{\tiny Lin}}$.
- kinks are generated at the rate

 $dN(\mathbf{q}) / (dz d^2 \mathbf{q}) = \rho_{\mathbf{N}}(\mathbf{r}_{\mathrm{T}}) \cdot d\sigma_{\mathbf{N}(\mathrm{Qu})} / d^2 \mathbf{q} + \rho_{\mathbf{e}}(\mathbf{r}_{\mathrm{T}}) \cdot d\sigma_{\mathbf{e}(\mathrm{Qu})} / d^2 \mathbf{q}$

where $\sigma_{(Qu)}$ is the quantum-mechanical cross section on δV_k $\rho_{e \text{ or } N}(\mathbf{r}_T)$ is the density of electrons or nuclei, averaged on z (the Lindhard charge density is $\rho_{Linhard} = \text{Ze } \rho_N - e \rho_e$)

- To simplify we ignore the shape dependence of the δV_k 's on the \boldsymbol{r}_k 's
- we ignore the correlations between the \mathbf{r}_k 's
- The random quantity is the vector **q**

Monte Carlo simulation - 2

Classical method : "binary collisions" Use the classical equation of motion in the full frozen potential $V(\mathbf{r}_{T}, z) = V_{Lin} + \delta V = \sum_{k} e_{k} / |\mathbf{r} - \mathbf{r}_{k}|$

Each constituent k sitting near the trajectory changes \mathbf{p}_{T} by

$$\Delta \mathbf{p}_{T} = (e/v) \int dz \operatorname{grad}_{\mathbf{b}} V_{k}(\mathbf{b}, z)$$

(straight-line approximation). **b** = *impact parameter* = $(\mathbf{r} - \mathbf{r}_k)_T$

$$\Delta \mathbf{p}_{T} = \Delta \mathbf{p}_{T \text{ (continuous)}} + \mathbf{q}$$

$$\uparrow$$

$$V_{\text{Lin}}$$

$$\delta V$$

- To simplify we ignore the correlations between the \mathbf{r}_k 's
- The random quantity is the vector $\mathbf{r}_{k,T}$

Classical vs. quantum cross sections on δV_k

We re-formulate the classical method like the semi-quantum one, neglecting the variations of the density $\rho_k(\mathbf{r}_{k,T})$ of consituent k, near the trajectory (at least within the range \mathbf{b}_{max} of δV_k . This rough approximation gives

$$dN(\mathbf{q})/(dz d^2\mathbf{q}) \approx \rho_N(\mathbf{r}_T) \cdot d\sigma_N(\mathbf{c}_I) / d^2\mathbf{q} + \rho_e(\mathbf{r}_T) \cdot D\sigma_e(\mathbf{c}_I) / d^2\mathbf{q}$$

where $\sigma_{(CI)}$ is the classical cross section on δV_k

Then it suffices to compare $d\sigma_{(CI)}/d^2q$ and $d\sigma_{(Qu)}/d^2q$.

Recall of the main properties of δV_k :

- Coulomb singularity at the origin, -e $\delta V_k \simeq \alpha_k/r$ ($\alpha_k = 1/137$ or -Z/137)
- short range, or decreasing at least like r⁻²
- dissymmetry in \mathbf{b}_{T} .

Average vector \mathbf{q} : $\int d^2 \mathbf{q} \mathbf{q} \, d\sigma/d^2 \mathbf{q} = 0$ (both in classical and quantum models)

Weighted cross sections: $M^{(n)} = \int d^2 \mathbf{q} |\mathbf{q}|^n d\sigma/d^2 \mathbf{q}$; $M^{(0)} = \text{total cross section}$;

 $M^{(n)}_{(CI)}$ is better re-written as $\int d^2 \mathbf{b} |\mathbf{q}_{CI}(\mathbf{b})|^n$

Examples :

- For a spherically symmetric and monotonic potential V(r) :

 $\begin{array}{l} \mathsf{M}^{(1)}_{\ \, (\mathsf{CI})} &= 2\pi^2 \int \ \, r \ \, dr \ \, \mathsf{V}(r) \\ \mathsf{M}^{(1)}_{\ \, (\mathsf{Qu})} &= 4\pi^2 \int \ \, r^2 \ \, dr \ \, \mathsf{V}^2(r) \end{array}$

- For any potential: $M^{(2)}_{(CI)} = M^{(2)}_{(Qu)}$

 $M^{(2)}$ from δV_k governs the **rate of increase** of the **transverse energy**. Should we conclude that the classical and quantum models predict *the same dechanneling length* ?

For $q > q_c \sim \psi_c \varepsilon$ dechanneling occurs at once, no matter the excess $q - q_c$. Therefore the dechanneling rate is sensitive to $M^{(2)}_{eff} = \int d^2 \mathbf{q} \cdot d\sigma/d^2 \mathbf{q} \cdot \min(\mathbf{q}^2, \mathbf{q}_c^2)$ Conclusion: $M^{(2)}_{eff}$ (Qu) > $M^{(2)}_{eff}$ (Cl) (assuming $\alpha_k < 1$)

Rough estimation :

$$M^{(2)}_{eff}$$
 (CI) / $M^{(2)}_{eff}$ (Qu) = log(q_c b_{max}/ α_k) / log(q_c b_{max})

Typical order of magnitude $b_{max} \sim 1 \text{ Å} = 1/(2 \text{keV}) ; \alpha_k \sim 1/10 \text{ (Silicium)} ;$ $\epsilon \sim 1 \text{ GeV} ; \psi_c \sim 1 \text{ mrad} => q_c \sim 1 \text{ MeV}$

=>
$$M^{(2)}_{eff}$$
 (CI) / $M^{(2)}_{eff}$ (Qu) $\approx 4/3$

For electrons,
$$\alpha_k = 1/137 \implies M^{(2)}_{eff}$$
 (Cl) / $M^{(2)}_{eff}$ (Qu) $\approx 5/3$

Our final opinion :

The quantum method is *dirty* (full of approximations). The classical method is *cleaner* but far from reality. Neglecting quantum effects *underestimates* the dechanneling length.

Effects of correlations between the constituents

Roughly speaking, the Born approximation becomes bad, and the Classical scattering theory becomes good, when α_k becomes > ~1.

When a group of N successive atoms is nearly aligned along the particle trajectory, it acts like *one* **super-nucleus** *of charge NZ*. If *NZ* /137 > ~1, coherent scattering on this group should be treated classically. This is the case of atoms displaced by a long-wavelength phonon.

We obtain a 'semi-incoherent' process (X.A. Channeling 2016)

Thus, δV_A should be separated in two contributions:

- That produced by long-wavelength phonons, which can be treated classically,
- That produced by short-wavelength phonons, which must be treated quantum-mechanically.

Atomic chain vibration (simulated)

Conclusions

- The residual potential δV, responsible for incoherent processes, is usually of shorter range and weak (α_k << 1). It should better be treated with the quantum Born approximation than treated classically.
- However, the inverse is true for the part of δV_A which is due to long-wavelength phonons.

Thank you !