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Classical radiation formula in vacuum (1/2)

r(t) (w, K, €)

applies to:

- Synchrotron radiation in weak field,
e.g. in undulator

- Soft Compton effect (Thompson regime)

- Soft coherent Bremsstrahlung (w <<ym)

- Channeling Radiation (classical trajectory .and. w << ym)

Natural units systems h=c=1; o=1/137

m=511KeV p°/m=y=(1-v3)Y2 (v=p)
A = Compton wavelength = 1/m = 386 fermi



Classical radiation formula (2/2) :

Spectral-angular distribution : dN(g) / (dwdQ) = (aw/4x?) |a-€*|?

€ = photon polarization
Right circular polarization (helicity A = +1) : €, = (1, 1) /N2
Left circular polarization (helicity A =-1) : &y = (1, -i) N2

a = [exp(ig) dr, ; j(-fgf;fs :
¢=kX k= (w,k)
p = (ym, ymv)

r, = perpendicularto k ; v ,=dr, /dt
Ultrarelativistic approximation : ¢ = (w/2) [t (y2 + v 2) dt’

The classical theory is Spin-blind and without recoil effect



Recoll and spin effects

... become important when w/ym is not small. It can happen in :

- fast varying field: |F|' |dF/dt| ~ m in the instantaneous electron frame,
where F = F¥v = {E B} . Examples:
- hard Compton effect (p.k ~ > m?)
- bremstrahlung at impact parameter b <~y As

- Strong Field, i.e., |F| ~> E_; = m?/e = 1,32 108 volt/m

in the electron frame. Examples:
- near neutron stars,
- in channeling of electrons of energy ~> 100 GeV
- in very intense laser fields.



The "magic" Baier-Katkov formula (1/5)

... IS a modification of the classical radiation formula
which takes recoil and spin effects into account.
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Using crossing symmetry, it can also
apply to pair creation in strong field.
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The "magic" Baier-Katkov formula (2/5)

1) Recoil effect : replace ¢ = k-X
by ¢ = (V') k-X
2) Spin dependence : replace a-e* by (\'|a,|\)
A, A = electron helicities = +1/2

A = photon helicity.

After summation over spins :

dN / (dwd€) = (aw/8m?) { (1+v2/y"2) | [ exp(ip’) dr, |2
+(1/7 -1/y)% | [ exp(idp’) dt |2}




The "magic" Baier-Katkov formula (3/5)

Helicity non-flip amplitudes

(+la|+) =S exp(ig") (dx+idy) N2 | o
(-la,]| -) = [exp(i¢’ ) (dx-idy) /N2 } = as classical, but with ¢

-lal-) =(iy') (+lal+)
<+|a+|+> = (Y/Y’ ) <'|a+|'>

Helicity-flip amplitudes

21y -1ly) [exp(i¢’) dt
(too much imbalance of helicity !)
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The "magic" B-K formula (4/5)

« magic » because it does not depend on the final electron trajectory !

trajectory after
photon emission

. . . whereas the quantum formula involves
both the initial and final wave functions :

<f|a|i> = fd3r W (r) €0 wi(r) oik.r



The "magic" B-K formula (5/5)

Should we conclude that the full information about the final
trajectory is contained in the initial one ?

Certainly not ! P
Counter-example :

trajectory.

Conclusion : The B-K formula is inaccurate if the field
varies fast in the directions perpendicular to the

- Does the B-K formula becomes exact when

the field is invariant along a plane ?



Plane wave external field

Let us try the case of

an electron in a plane
electromagnetic wave
packet :

Then the Dirac wave function of the electron
has a simple form, found by Volkov



Plane wave paket - Volkov wave function

Representation where a, and 2, are diagonal: ¢ = (x,&) = (., %, &+, &)

¥ = component of a, = +1 + or — is the sign
g = component of a, = -1 of the helicity %, /2

Light-like coordinates: X=(n,ry, X ) withn=X*=t+z and X =tz

Potential 4-vector of the wave packet: (0, A(n), 0)
Mechanical p;=ymv; . S
Canonical P;=p;—eA; P'=p"; P =p p'p =m+p;

Mass-shell condition:

Eigenstates of P* and Py : W(X) = exp (- p*X/2 + i Pr.Xy) (n)
PT(H) = PT+eAT(ﬂ)
p(n) = [m*+p;*(n)l/p”

Solution of the Dirac equation:

x(n) = x(-22) exp{ (-i/2) ["... dn’ p(n’)}
§(n) = (1/p*) [m+o.p;(n) o,] x(n)




Volkov transition amplitude — 1) the phase factor

Photon momentum k= (k*, ky, k). NANANNN

Frame where k=0, k=0 W

Mom. conservation P+ k=P W
prr=pt-k P'y=Pr; p’r(n) = pr(n) AN

faly= Jdnyn) e ayn) explikni2)
= Jdnexplig(n)] Qe
The phase factor
¢(n) = (p*/p’*) [N dn72 [mZ+p2(n)]/ (p*)?

equals the Baier-Katkov phase in the ultra-relativistic limit,
wdt = k*dn'/2 ;y = p*/(2m) ; vi(t) =2 p(n)p*; YA = ptlp’



Transition amplitude — 2) the spin factor (A;|Q(g,n)|A;)
helicity A = 0, /2 applied to the a, =+1 component
(+HQ(=n)+) =2 [p,(n) +ip,(n)]/p*
QN = (p*/p’*) (+Q(=n)+)

-lQ(+,n)[+) = N2 m (1/p’* - 1/p*)

{(-|Q(~n)|+) =0, etc.

(+|a_|+) = [ exp(i¢’ ) (dx+idy) N2
Recall Baier-Katkov :
-lal-) =) (+lal+)

-lay|+) =221y -1ly) Jexp(i¢') dt

(-la]+)=0




Application of the B-K formula

- ‘Exact’ case : Compton back scattering on laser field

- Approximate cases : when the electron is ultra-
relativistic so that in its frame the field of the radiator is
nearly equivalent to a plane electromagnetic wave

- (Weizsacker-Williams approximation). Examples:

> Undulator radiation

> Synchrotron radiation

> Coherent bremsstrahlung on planes
> Bremsstrahlung on a single atom

In these cases, the Baier-Katkov formula can also be
obtained by the WKBJ method.

What about channeling radiation ?



B-K formula in channeling radiation

In channeling, the potential strongly depends on the transverse
coordinates. The B-K formula is a priori inapplicable.

The spectral lines predicted by the B-K formula do not coincide
with the ones of radiative transition between transverse states
(X.A. in Channeling 2014).

Radiative capture :

above-barrier state => channeled state
is certainly a bad case for the B-K formula: the final motion is
too different from the initial one.

Nevertheless, B-K formula is usefull in channeling radiation, if
one applies it by small parts of the trajectory, like AB here
(completed by the 2 semi-infinite lines).

It makes the spectrum continuous, but provides an average

energy loss. This is the method used in the Fortan program FOT.




Fine test of the B-K formula in channeling
radiation

- Assume periodic trajectories and compare the spectral

lines predicted by B-K with "exact" spectral lines.
/\L/\/
Conserv. of energy and P, : %

(whyy +wb2)2 = E;-E'; (1)

B-K formula for the vi" harmonic
(w/hyy +w'62)2 = 2vr/l - w'(v{?) /2 (2)

v=n-n’ =decrease of transverse quantum number
n is given by the Bohr quantization rule L-E - (v{?) = 2nx
= The R-H-S of (1) and (2) are equal for v << E.

=> B-K formula does not give the exact detailed
spectrum in the hard region of CR.
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(Axial channeling) /o’ )
Continuous Lindhard potential: C@ O

Vi (ry) = <<V(t, 1y, 2)>>,

created by the charge density

Puin(rr) = <<p(t,rp,z)>>,

conserves : /

VLin X
> the projectile energy ¢,
> the longitudinal momentum p,

> the transverse energy &, = p;%/(2€) —e V. (r;)




Residual potential:

6V(t,rT,Z) = V(t;rT,Z) _ VLin(rT) * Breaks € » P, and Er.

* Responsible for dechanneling

Residual charge density and incoherent bremsstrahlung.

6p(ter)Z) = p(t,rT,Z) N pLin(rT)

Frozen approximation: Three cpntributions to 6p and 6V
Neglect the t-dependence (Beloshitsky, ...)
of 6p and 6V': 1) periodic modulation in z
(negligible effects)
6p(ry,z) = 6p(t,r1,2) g 2) vibrations of the atomic chain
(phonons)
Justification : the projectile 3) electron motion inside the atoms

moves much faster than the
crystal constituents BV = 8V gyioq + 6V, + BV,




Residual potential 6V,
from the vibrations of chain axis
the atomic chain

atomic potential
V, = Ze exp(-R/a) /R

* 8V, is of short range

T

frozen
nhucleus
position

* |ts shape depends on the
transverse position ry ¢
of the frozen nucleus

* |t is generally dissymmetric

* zero mean value : [d3r 6V, =0



Residual potential
from the kt" electron
of an atom -

Charge density :

* 8V, has the Coulomb peak - +
in-e/R withR=r-r,, o
but not the Coulomb tail. \\
* It has a dipole tail in R2 op
frozen e ~ dipole

* |ts shape depends on the position
frozen position r, of the

electron in the atom

* |t is generally
dissymmetric

Nucleus position



Monte Carlo simulation - 1 A

Semi-quantum method :

L
Represent the effect of 6V by kinks of the trajectory, L
where p; receives a sudden jump q (= q;)
L J

- between two kinks: classical motionin V. .
- kinks are generated at the rate

dN (q) / (dz d?q) = py(r;) . doy (Qu) /d*q + p.(r;) . do, (Qu) /d*q

where o, is the quantum-mechanical cross section on 8V,
Pe or n(Fr) is the density of electrons or nuclei,
averaged on z

(the Lindhard charge density is p|;harq = Z€ Py — € Pe )

* To simplify we ignore the shape dependence of the &V, ‘son ther, ‘s
* we ignore the correlations between ther, ‘s
* The random quantity is the vector q



Monte Carlo simulation - 2

Classical method : “binary collisions”
Use the classical equation of motion in the full frozen potential

V(rp,z) = Vi, +8V = 2 e /|r—r]
Each constituent k sitting near the trajectory changes p; by

Ap; = (e/v) fdz grad, V,(b,z)
(straight-line approximation). b =impact parameter = (r-r,);

ApT = AI:’T (continuous) +tq

! !

Vv oV

Lin

* To simplify we ignore the correlations between the r, ‘s
* The random quantity is the vector r, ;




Classical vs. quantum cross sections on 6V,

We re-formulate the classical method like the semi-quantum one,
neglecting the variations of the density p,(r, ;) of consituent k, near the

trajectory (atleast within the range bmax of &V, .

This rough approximation gives

dN(q)/(dz d*q) = py(r;) . doy o /d*a + pe(r;) . Do, ¢ /d*q

where o, is the classical cross section on 6V,

Then it suffices to compare do¢, /d?q and doqu) /d?q.

Recall of the main properties of &V, :

- Coulomb singularity at the origin, -e 6V, ~ o, /r (a, =1/137 or-2/137)
- short range, or decreasing at least like r2

- dissymmetry in b; .



General comparison between classical and quantum cross sections
T T

(straight-line approximation) (Born approximation)

Average vectorq: [d?qq do/d?2g=0 (both in classical and quantum models)
Weighted cross sections: M =[d2q |q|" do/d?q ; M =total cross section;
M) ., is better re-written as [ d%b |q(b)|"

Examples :

- For a spherically symmetric and monotonic potential V(r) :
M =2r? [ rdrV(r)
M@ g =4m2 [ r2dr V2(r)
- For any potential: M, =M®)

M®) from 8V, governs the rate of increase of the transverse energy. Should we
conclude that the classical and quantum models predict the same dechanneling
length ?



Simple model o, =Z/137 2 by,
for 8V,: b~ nuclear radius O‘k/R\‘
IDmax ~ aTF E b

g2 do/dLog g?
. M(2) = area under a curve

{} shift = log(1/a,)

lal

T (Ing scale)
ak/bmax 1/bmax cxk/bmin 1/bmin

\ J \ J
Y

qmin qmax

screening regularization



For g > (.~ e dechanneling occurs at once, no matter the excess q-q_ .
Therefore the dechanneling rate is sensitive to M@ .= [d?q . do/d?q . min(g?,q_?)

Conclusion: M@ . (Qu) > M@ . (Cl) (assuming a, <1)

g% do/dLog g
R M) = area under a curve

{} shift = log(1/a,)

lq]

T T / T T (Io;g scale)
ak/bmax 1/bmax
\ J
|

Amin qcz q2 do/qu Qmax

screening . regularization
The effective

area stops here.

qCNl'IJCE l |




Rough estimation :
M@ _ (Cl) / M@ . (Qu) = log(g. b, /o) / log(q. b,..)

Typical order of magnitude
b...~1A=1/(2keV); o ~ 1/10 (Silicium) ;
e~ 1GeV ; lj)c"‘l mrad => qc~1 MeV

=> M@ . (Cl) / M@ . (Qu) = 4/3
For electrons, a, = 1/137 => M@ . (Cl) / M@ . (Qu) = 5/3
Our final opinion :
The guantum method is dirty (full of approximations). The classical method is

cleaner but far from reality. Neglecting quantum effects underestimates the

dechanneling length.



Effects of correlations between the constituents

Roughly speaking, the Born approximation becomes bad, and
the Classical scattering theory becomes good, when o,
becomes > ~1.

When a group of N successive atoms is nearly aligned along
the particle trajectory, it acts like one super-nucleus of charge
NZ. If NZ /137 > ~1, coherent scattering on this group should
be treated classically. This is the case of atoms displaced by a
long-wavelength phonon.

We obtain a ‘semi-incoherent’ process (X.A. Channeling 2016)

Thus, 6V, should be separated in two contributions:

- That produced by long-wavelength phonons, which
can be treated classically,

- That produced by short-wavelength phonons, which

must be treated quantum-mechanically.




Atomic chain vibration (simulated)

e o 9
s o e« ® - o . = -
o ~ d
L2 3 B




Conclusions

* The residual potential 8V, responsible for incoherent
processes, is usually of shorter range and weak (a, << 1).
It should better be treated with the quantum Born
approximation than treated classically.

* However, the inverse is true for the part of 6V, which is
due to long-wavelength phonons.

Thank you !
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