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Classical radiation formula in vacuum (1/2) 

- Synchrotron radiation in weak field, 
  e.g. in undulator  
- Soft Compton effect (Thompson regime) 
- Soft coherent Bremsstrahlung  (ω << γm) 
-  Channeling Radiation (classical trajectory .and. ω << γm) 

applies	to	:	 e – 

(ω, k, ε) r(t) 

Natural	units	systems		ħ	=	c	=	1	;				α	=	1/137	
	
m	=	511	KeV						p0/m	≡	γ	=	(1-v2)-1/2				(v	≡	β)	
λC	=	Compton	wavelength	=	1/m	=	386	fermi	



Classical radiation formula (2/2) : 

Spectral-angular distribution  : dN(ε) / (dωdΩ) = (αω/4π2) |a·ε*|2 
 
         ε = photon polarization 
Right circular polarization (helicity Λ = +1) : ε(+) = (1, i) /√2 
  Left circular polarization (helicity Λ = -1) :  ε(-) = (1, -i) /√2 
 
         a = ∫ exp(iφ) dr⊥   ;   
 
         φ = k·X 
 
         r⊥ =  perpendicular to k ;   v⊥= dr⊥ /dt 
 
 Ultrarelativistic approximation :  φ = (ω/2) ∫ t (γ-2 + v⊥2) dt’ 
 
 The classical theory is Spin-blind and without recoil effect 

4-vectors :   
X = (t,r)   
k = (ω,k)  
p = (γm, γmv)  



Recoil and spin effects  

… become important when ω/γm is not small. It can happen in : 
 
 - fast varying field:  |F|-1 |dF/dt| ~ m  in the instantaneous electron frame,  
   where F = Fµν = {E,B} . Examples:  
            - hard Compton effect (p.k ~ > m2) 
            - bremstrahlung at impact parameter  b < ~ γ λC   
 
 - Strong Field, i.e., |F| ~>  Ecrit = m2/e = 1,32 1018 volt/m 
in the electron frame. Examples: 
              - near neutron stars, 
              - in channeling of electrons of energy ~> 100 GeV  
              - in very intense laser fields.   



The "magic" Baier-Katkov formula (1/5) 

      ... is a modification of the classical radiation formula 
which takes recoil and spin effects into account.   

Using crossing symmetry, it can also 
apply to pair creation in strong field. 

ei	–	
ef	–	

e	–	

e	+	



The "magic" Baier-Katkov formula (2/5) 

1)  Recoil effect : replace φ =  k·X 
                              by  φ’ =  (γ/γ’) k·X 
 
2) Spin dependence :  replace  a·e*  by  〈λ’|aΛ|λ〉  
  λ, λ’ = electron helicities = ±1/2  
  Λ = photon helicity.   
 
After summation over spins : 
 

dN	/	(dωdΩ)	=	(αω/8π2)		{		(1+	γ2/γ’2)		|	∫		exp(iφ’)		dr⊥	|2		

																																												+	(1/γ’-1/γ)2	|	∫		exp(iφ’)		dt		|2		}	



The "magic" Baier-Katkov formula (3/5) 

Helicity non-flip amplitudes 
 
〈+|a-|+〉 = ∫ exp(iφ’) (dx+idy) /√2  
〈-|a+| -〉 = ∫ exp(iφ’) (dx-idy) /√2  
 
〈-|a-|-〉  = (γ/γ’) 〈+|a-|+〉 
〈+|a+|+〉 = (γ/γ’) 〈-|a+|-〉 
 
Helicity-flip amplitudes 
 
〈-|a+|+〉 = - 〈+|a-|-〉  = 2-1/2 (1/γ’-1/γ)  ∫ exp(iφ’) dt 
〈-|a-|+〉 = - 〈+|a+|-〉  = 0 (too much imbalance of helicity !) 
 
 

 = as classical, but with φ’  



The "magic" B-K formula (4/5) 

  « magic » because it does not depend on the final electron trajectory ! 

r

e – e' – 
if not radiates  

trajectory after 
photon emission 

 

. . . whereas the quantum formula involves 
both the initial and final wave functions : 
 
      〈f|a|i〉 =   ∫d3r  ψf*(r) ε*.α ψi(r) eik.r 



The "magic" B-K formula (5/5) 

Should we conclude that the full information about the final 
trajectory is contained in the initial one ?   

Conclusion	:		The	B-K	formula	is	inaccurate	if	the	field	
varies	fast	in	the	direc9ons	perpendicular	to	the	
trajectory.		
	
-	Does	the	B-K	formula	becomes	exact	when						
		the	field	is	invariant	along	a	plane	?				

Certainly	not	!	
Counter-example	:	

e-i	

e-f	
atom	



Plane wave external field  

Let us try the case of 
an electron in a plane 
electromagnetic wave 
packet : 

E	
B	

Then the Dirac wave function of the electron 
has a simple form, found by Volkov 



Plane wave paket - Volkov wave function 

Representation where αz and Σz  are diagonal:    ψ = (χ,ξ) = (χ+ , χ- , ξ+ , ξ-)  
 
 
 
 
Light-like coordinates:  X = ( η , rT , X- )  with η = X+ = t+z  and  X- = t-z  
 
Potential 4-vector of the wave packet: (0, AT(η), 0)  
Mechanical pT = γmvT 
Canonical   PT = pT – eAT       P+ =p+ ; P - = p- 

 
     
 Eigenstates of P+ and PT : 
 
 
Solution of the Dirac equation: 

χ	=	component of αz = +1  
ξ	=	component of αz = -1  

+ or – is the sign 
of the helicity Σz /2 

Ψ(X)	=	exp	(-i	p+X-/2	+	i	PT.XT)	ψ(η)		
pT(η)	=	PT+eAT(η)		
p-(η)	=	[m2+pT2(η)]/p+		

χ(η)	=	χ(-∞)	exp{	(-i/2)	∫	η-∞		dη’		p-(η’)	}				
ξ(η)	=	(1/p+)	[m+σ.pT(η)	σz]	χ(η)	

Mass-shell	condi9on:			
p+p-	=	m2	+	pT2		



Volkov	transi9on	amplitude	–	1)	the	phase	factor	

Photon momentum k = (k+ , kT , k- ) .  
Frame where  kT = 0,   k- = 0  
Mom. conservation  P’ + k = P      
 p’ + = p+- k+  ;  P’T = PT ;  p’T(η) = pT(η)  
 

〈f| a |i〉 =   ∫dη ψf*(η) ε*.α ψi(η) exp(ik-η/2) 

           =   ∫dη exp[ iφ’(η) ]   〈λf|Q(ε,η)|λi〉 , 
 
The phase factor 

       φ’(η)  = (p+/p’ +)  ∫ η-∞  dη’/2  [m2+pT
2(η)] / (p+)2 

 

equals the Baïer-Katkov phase in the ultra-relativistic limit, 
 ω dt  ⇒ k+ dη’/2  ; γ  ⇒ p+/(2m)  ;  vT(t) ⇒ 2 pT(η)/p+ ;  γ/γ’ ⇒ p+/p’  



Transi9on	amplitude	–	2)	the	spin	factor		〈λf|Q(ε,η)|λi〉	 

helicity λ = σz /2  applied to the αz =+1 component χ 
 
〈+|Q(-,η)|+〉 = √2  [px(η) + i py(η)] / p+  
 
〈-|Q(-,η)|-〉 = (p+/p’ +)  〈+|Q(-,η)|+〉
 
〈-|Q(+,η)|+〉 = √2 m (1/p’+ - 1/p+)  
 

〈-|Q(-,η)|+〉 = 0 ,  etc. 
 
Recall Baïer-Katkov : 

〈+|a-|+〉 = ∫ exp(iφ’) (dx+idy) /√2  
 
〈-|a-|-〉  = (γ/γ’) 〈+|a-|+〉 
 
〈-|a+|+〉 = 2-1/2 (1/γ’-1/γ)  ∫ exp(iφ’) dt 
 
〈-|a-|+〉 = 0 



Application of the B-K formula 

-  ‘Exact’	case	:	Compton	back	scarering	on	laser	field	

-  Approximate	cases	:	when	the	electron	is	ultra-
rela9vis9c	so	that	in	its	frame	the	field	of	the	radiator	is	
nearly	equivalent	to	a	plane	electromagne9c	wave	

-  (Weizsäcker-Williams	approxima9on).	Examples:	

>	Undulator	radia9on	
>	Synchrotron	radia9on	
>	Coherent	bremsstrahlung	on	planes	
>	Bremsstrahlung	on	a	single	atom		
	
In	these	cases,	the	Baïer-Katkov	formula	can	also	be	
obtained	by	the	WKBJ	method.			
	
What	about	channeling	radia9on	?	



B-K formula in channeling radiation 
In	channeling,	the	poten9al	strongly	depends	on	the	transverse	
coordinates.	The	B-K formula is a priori inapplicable.  
 
The spectral	lines	predicted	by	the	B-K formula do not coincide	
with	the	ones	of	radia9ve	transi9on	between	transverse	states	
(X.A.	in	Channeling	2014).	
	
Radia9ve	capture	:	
												above-barrier	state	=>		channeled	state		
is	certainly	a	bad	case	for	the	B-K formula: the final motion is 
too different from the initial one.   
 
Nevertheless, B-K formula is usefull in channeling	radia9on,	if	
one	applies	it	by	small	parts	of	the	trajectory,	like	AB	here	
(completed	by	the	2	semi-infinite	lines).	
	It	makes	the	spectrum	con9nuous,	but	provides	an	average	
energy	loss.	This	is	the	method	used	in	the	Fortan	program	FOT.		
	
									----------------		Thank	you	!	-------------------	

B	

A	



Fine test of the B-K formula in channeling 
radiation 

 Conserv. of energy and PL : 
                                             ( ω/γγ’ + ωθ2 )/2   =  ET - E'T                       (1) 
 
B-K formula for the νth harmonic 
                                            ( ω/γγ’ + ω'θ2 )/2  =  2νπ/L - ω'〈vT

2〉 /2       (2) 
 
 ν = n - n’ = decrease of transverse quantum number   
 n is given by the Bohr quantization rule   L · E · 〈vT

2〉 = 2nπ 
 ⇒ The R-H-S of (1) and (2) are equal for ω << E.  

L 

	-	Assume	periodic	trajectories	and	compare	the	spectral	
lines	predicted	by	B-K	with	"exact"	spectral	lines.	

⇒	B-K	formula	does	not	give	the	exact	detailed	
spectrum	in	the	hard	region	of	CR.			
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(Axial	channeling)	
	
Con8nuous	Lindhard	poten8al:	
VLin(rT)	=	<<V(t,	rT,	z)>t>z			
			
created	by	the	charge	density		
							ρLin(rT)	=	<<ρ(t,rT,z)>t>z		
	

VLin	conserves	:		
>	the	projec8le	energy		ε,		
>	the	longitudinal	momentum	pz				
>	the	transverse	energy						εT	=	pT2/(2ε)	–	e	VLin(rT)		

z	

x	 y	
rT	=	(x,y)	



Residual	poten5al:		
δV(t,rT,z)	=	V(t,rT,z)	-	VLin(rT)		
	
Residual	charge	density		
				δρ(t,rT,z)	=	ρ(t,rT,z)	-	ρLin(rT)	

�	Breaks	ε	,	pz	and	εT	.		
�	Responsible	for	dechanneling	
and	incoherent	bremsstrahlung.			

Three	contribu8ons	to	δρ	and	δV		
(Beloshitsky,	…)	
	
1)	periodic	modula8on	in	z		
				(negligible	effects)	
2)	vibra8ons	of	the	atomic	chain				
				(phonons)	
3)	electron	mo8on	inside	the	atoms		

								δV	=	δVperiod	+	δVA	+	δVe	

Frozen	approxima-on:		
Neglect	the	t-dependence		
of	δρ	and	δV	:	
	
					δρ(rT,z)	=	δρ(t,rT,z)	t=0		
	
Jus8fica8on	:	the	projec8le	
moves	much	faster	than	the	
crystal	cons8tuents		



� δVA	is	of	short	range	
																					
� Its	shape	depends	on	the	
			transverse	posi8on	rN	T		
			of	the	frozen	nucleus	
 
� It	is	generally	dissymmetric	
	
� zero	mean	value	:	∫	d3r	δVA	=	0	

Residual	poten8al	δVA	
from	the	vibra8ons	of	
the	atomic	chain	

δVA	

VLin	

rT	

frozen	
nucleus	
posi8on	

chain	axis	
atomic	poten8al	

VA	≈	Ze	exp(-R/a)	/R		



Residual	poten8al	
from	the	kth		electron	
of	an	atom	

� δVk	has	the	Coulomb	peak		
			in	-e/R		with	R	=	r	–	rk	,		
			but	not	the	Coulomb	tail.	
	
� It	has	a	dipole	tail	in	R-2		
	
� Its	shape	depends	on	the		
		frozen	posi8on	rk	of	the				
		electron	in	the	atom	
	
� It	is	generally		
			dissymmetric	
	

=	 +	

Charge	density	:	

	δρ	
~	dipole	

rT	

VA+δVk	

δVk	

VA	

Nucleus	posi8on	

frozen	e-	
posi8on	



Monte	Carlo	simula8on	-	1	
					Semi-quantum	method	:	
	

Represent	the	effect	of		δV	by	kinks	of	the	trajectory,																	
where	pT		receives	a	sudden	jump	q		(=	qT)	
	-	between	two	kinks:	classical	mo8on	in	VLin	.	
	-	kinks	are	generated	at	the	rate				
	
							dN	(q)	/	(dz	d2q)		=	ρN(rT)	.	dσN	(Qu)	/d2q		+		ρe(rT)	.	dσe	(Qu)	/d2q		
	
			where		σ(Qu)	is	the	quantum-mechanical	cross	sec5on	on	δVk		
																ρe	or	N(rT)	is	the	density	of	electrons	or	nuclei,			
																averaged	on	z				
												(the	Lindhard	charge	density	is		ρLinhard	=	Ze	ρN	–	e	ρe	)	
	
 �	To	simplify	we	ignore	the	shape	dependence	of	the	δVk	‘s	on	the	rk	‘s	
 �		we	ignore	the	correla8ons	between	the	rk	‘s	
 �	The	random	quan8ty	is	the	vector	q		

q	



Monte	Carlo	simula8on	-	2	

q	

Classical	method	:		‘’binary	collisions’’	
Use	the	classical	equa8on	of	mo8on	in	the	full	frozen	poten8al	
V(rT,z)		=		VLin	+	δV		=		∑k	ek	/|r	–	rk|	
	
Each	cons8tuent	k	siong	near	the	trajectory	changes	pT	by		
	
																						ΔpT		=	(e/v)		∫dz		gradb	Vk(b,z)		
	
	(straight-line	approxima8on).			b	=	impact	parameter	=	(r-rk)T	
	
																							ΔpT		=	ΔpT	(con8nuous)	+	q		
	
	
	
�		To	simplify	we	ignore	the	correla8ons	between	the	rk	‘s	
�	The	random	quan8ty	is	the	vector	rk,T		

VLin																							δV		



We	re-formulate	the	classical	method	like	the	semi-quantum	one,	
neglec5ng	the	varia5ons	of	the	density	ρk(rk,T)	of	consituent	k,		near	the	

trajectory		(at	least	within	the	range	bmax	of	δVk	.		
This	rough	approxima8on	gives	
	

			dN(q)/(dz	d2q)		≈	ρN(rT)	.	dσN	(Cl)	/d2q		+		ρe(rT)	.	Dσe	(Cl)		/d2q		
	
where		σ(Cl)		is	the	classical	cross	sec5on	on	δVk	
	

Then	it	suffices	to	compare	dσ(Cl)	/d2q		and		dσ(Qu)	/d2q.			
	
Recall	of	the	main	proper8es	of	δVk	:	
-	Coulomb	singularity	at	the	origin,	-e	δVk		~	αk/r			(αk	=	1/137	or	-Z/137)	
	-	short	range,	or	decreasing	at	least	like	r-2			
	-	dissymmetry	in	bT	.	

Classical	vs.	quantum	cross	sec8ons	on	δVk		



Average	vector	q	:					∫	d2q	q		dσ/d2q	=	0						(both	in	classical	and	quantum	models)	
	
Weighted	cross	sec8ons:		M(n)	=	∫	d2q	|q|n		dσ/d2q		;				M(0)	=	total	cross	sec8on;	
	
M(n)

(Cl)		is	bewer	re-wriwen	as		∫	d2b	|qCl(b)|n	
	
Examples	:		
	
-	For	a	spherically	symmetric	and	monotonic	poten8al	V(r)	:						
																																																																																							M(1)	(Cl)				=	2π2	∫		r	dr	V(r)										
																																																																																							M(1)	(Qu)		=	4π2	∫		r2	dr	V2(r)		
-	For	any	poten8al:		M(2)

(Cl)	=	M(2)
(Qu)		

	
M(2)	from	δVk	governs	the	rate	of	increase	of	the	transverse	energy.	Should	we	
conclude	that	the	classical	and	quantum	models	predict	the	same	dechanneling	
length	?		
	

General	comparison	between	classical	and	quantum	cross	sec8ons		
																																																																										↑																															↑	
																																	(straight-line	approxima8on)																				(Born	approxima8on)	



Simple	model		
for	δVA	:	

αk	=	Z/137	
bmin	~	nuclear	radius	
bmax	~	aTF		

2	bmin	

bmax	
R	

αk/R	

0	

q2	dσ/dLog	q2	

|q|		

pure	
Coulomb	

αk/bmax	 1/bmax	

qmin	

αk/bmin	 1/bmin	

qmax	

Cl	 Qu	

M(2)	=	area	under	a	curve	
shi}	=	log(1/αk)	

screening	 regulariza8on	

(log	scale)		



For	q	>	qc	~	ψc	ε		dechanneling	occurs	at	once,	no	mawer	the	excess	q	-	qc	.								

Therefore	the	dechanneling	rate	is	sensi8ve	to		M(2)
eff

	=	∫	d2q	.	dσ/d2q	.	min(q2,qc2)	
Conclusion:				M(2)

eff	(Qu)		>		M(2)
eff	(Cl)					(assuming	αk	<	1)	

0	

q2	dσ/dLog	q2	

|q|		

pure	
Coulomb	

αk/bmax	 1/bmax	

qmin	

αk/bmin	 1/bmin	

qmax	

Cl	 Qu	

shi}	=	log(1/αk)	

screening	 regulariza8on	

qc	~	ψc	ε	

(log	scale)		

qc2	q2	dσ/dq2		

The	effec@ve	
area	stops	here.	

M(2)	=	area	under	a	curve	



Rough	es8ma8on	:					
																																							M(2)

eff	(Cl)		/		M(2)
eff	(Qu)		=		log(qc	bmax	/αk)	/	log(qc	bmax	)		

	
Typical	order	of	magnitude		
bmax	~	1	Å	=	1/(2keV)	;	αk	~	1/10	(Silicium)	;		
ε	~	1	GeV		;				ψc	~	1	mrad			=>			qc	~	1	MeV		

										
																														=>		M(2)

eff	(Cl)		/		M(2)
eff	(Qu)	≈	4/3	

		
For	electrons,	αk	=	1/137		=>		M(2)

eff	(Cl)		/		M(2)
eff	(Qu)	≈	5/3	

	
Our	final	opinion	:	
The	quantum	method	is	dirty	(full	of	approxima8ons).	The	classical	method	is	
cleaner		but	far	from	reality.	Neglec8ng	quantum	effects	underes5mates	the	
dechanneling	length.		

	
	
	



Roughly	speaking,	the	Born	approxima8on	becomes	bad,	and	
the	Classical	scawering	theory	becomes	good,	when	αk	
becomes	>	~1.		
When	a	group	of	N	successive	atoms	is	nearly	aligned	along	
the	par8cle	trajectory,	it	acts	like	one	super-nucleus	of	charge	
NZ.		If	NZ	/137	>	~1,	coherent	scawering	on	this	group	should	

be	treated	classically.		This	is	the	case	of	atoms	displaced	by	a	
long-wavelength	phonon.		
We	obtain	a	‘semi-incoherent’	process	(X.A.	Channeling	2016)	

Effects	of	correla8ons	between	the	cons8tuents	

e+ 

Thus,	δVA	should	be	separated	in	two	contribu8ons:	
-  That	produced	by	long-wavelength	phonons,	which	

can	be	treated	classically,		
-  That	produced	by	short-wavelength	phonons,	which	

must	be	treated	quantum-mechanically.		
	



β=-0.9	

β=+0.0	

β=+0.5	

β=+0.9	

Atomic	chain	vibra8on	(simulated)	



Conclusions		

	
•  The	residual	poten8al	δV,	responsible	for	incoherent	

processes,	is	usually	of	shorter	range	and	weak	(αk	<<	1).	
It	should	bewer	be	treated	with	the	quantum	Born	
approxima8on	than	treated	classically.		

•  However,	the	inverse	is	true	for	the	part	of	δVA	which	is	
due	to	long-wavelength	phonons.	

	

																																			Thank	you	!	
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