STRONG REDUCTION OF THE EFFECTIVE RADIATION LENGTH IN AN AXIALLY ORIENTED SCINTILLATOR CRYSTAL
Outlook

- State of the Art and motivation of this work;

- Introduction on electromagnetic processes in crystals;

- Experiment at CERN on an extracted line of SPS with 120 GeV/c electrons;

- Comparison with simulation;

- Possible applications;

- Conclusions.
State of the art: crystal scintillators

- Inorganic scintillator crystals found many application in medical, nuclear and high-energy physics.

- The invention of cheap and high-Z inorganic crystalline scintillators with small radiation length and high-density permitted to realize quite compact calorimeters for ultra-high energies.

- The crystalline structure of inorganic scintillators is usually not considered in the study of physical processes at the base of e.m. calorimeter operation.
State of the art: orientational e.m. effects

• In the last decades, many experiments demonstrated the radiated energy and pair production increase in aligned crystals;

• Starting from the theoretical idea of A.I. Atkiezer and N.F. Shulga [1] and Baier et al., experimental studies of the enhancement of electromagnetic showers initiated by high-energy electrons or gamma-quanta incident along major crystalline directions have been carried on with single-element crystals [2];

Scientific motivation

- Can these orientational effects be important also for inorganic scintillators used in HEP electromagnetic calorimeters?
- A first study was performed with 26 GeV electrons [3];
- The modern electromagnetic calorimeters are designed for experiments at energies of hundreds of GeV/TeV and these enhancement effects are expected to be more important in this energy range [4].

We performed a campaign of measurement to study the energy loss of hundreds GeV electrons in a lead tungstate at CERN for the first time.

ELECTROMAGNETIC PROCESSES IN ORIENTED CRYSTALS
Enhancement of bremsstrahlung radiation in aligned crystals

Coherent Bremsstrahlung (1950s) Ter-Mikaelian, Ferretti, Dyson-Uberall

$e^\pm \parallel l_c = 2 \frac{\theta}{\omega}$

$\theta << 1$
Enhancement of bremsstrahlung radiation in aligned crystals

Coherent Bremsstrahlung (1950s) Ter-Mikaelian, Ferretti, Dyson-Uberall

\(\frac{1}{\kappa} \)

\(\gamma \approx 2 / \omega \)

\(\theta \ll 1 \)

Diamond

e\(^-\)

54.5 MeV

Counts

Photon energy (keV)

Channeling Radiation (1976) Kumakhov

Laboratori Nazionali di Frascati, 1960
Synchrotron-like radiation in crystals

At energies $> \text{few GeV}$

Radiation emission angle: $\theta_\gamma = 1/\gamma$

Threshold angle: $\theta_v = V_0/m$

$\theta_\gamma \ll \theta_v$ \textit{Criterion for synchrotron radiation}
Strong field regime of Synchrotron Radiation

At energies >10 GeV (100 GeV) depending on atomic number Z

Relevant for linear colliders, astrophysical objects like magnetars, heavy ion collisions and more. When the magnetic/electric field reaches the

Critical Schwinger QED field:

$$E_0 = \frac{m^2 c^3}{e\hbar} \simeq 1.3 \times 10^{16} \text{V/cm}$$

In the rest frame of the particle, the Lorentz contracted field can be computed as:

$$\gamma E = E_0$$

Being the Planar/Axial field $E = 10^9/10^{11} \text{ V/cm}$
“Quantum” synchrotron-like radiation is observable in crystals

TABLE I. Certain parameters of the averaged potentials of the principal axes and planes of a number of crystals.

<table>
<thead>
<tr>
<th>Element</th>
<th>z</th>
<th>(Plane) (Axis)</th>
<th>d_{pl} (d_{ax}), Å</th>
<th>T, K</th>
<th>u, Å</th>
<th>v_{max}, eV</th>
<th>E_{max}, GV/cm</th>
<th>$E_{\chi=1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>6</td>
<td>(110)</td>
<td>1.26</td>
<td>293</td>
<td>0.04</td>
<td>20.8</td>
<td>7.7</td>
<td>890</td>
</tr>
<tr>
<td>Si</td>
<td>14</td>
<td>(110)</td>
<td>2.52</td>
<td>293</td>
<td>0.04</td>
<td>137</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>Ge</td>
<td>32</td>
<td>(110)</td>
<td>1.92</td>
<td>293</td>
<td>0.075</td>
<td>21.5</td>
<td>5.7</td>
<td>1193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(110)</td>
<td>3.84</td>
<td>293</td>
<td>0.075</td>
<td>133</td>
<td>46</td>
<td>145</td>
</tr>
<tr>
<td>W</td>
<td>74</td>
<td>(110)</td>
<td>2.00</td>
<td>293</td>
<td>0.085</td>
<td>37.7</td>
<td>9.9</td>
<td>684</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(110)</td>
<td>2.00</td>
<td>0</td>
<td>0.036</td>
<td>44.0</td>
<td>14.9</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(110)</td>
<td>4.00</td>
<td>200</td>
<td>0.085</td>
<td>229</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(110)</td>
<td>4.00</td>
<td>100</td>
<td>0.054</td>
<td>300</td>
<td>144</td>
<td>47</td>
</tr>
</tbody>
</table>

At $\chi = \gamma E / E_{\perp 0} \geq 1$ – quantum strong field limit

Emission of hard photons with energy comparable to the primary electron/positron – cannot be treated classically -> Strong increase in the energy lost by the primary particle.
EXPERIMENT AT CERN

PWO crystal

PbWO4 (PWO) scintillation crystals introduced by INP team in 1994 are currently used by CMS, ALICE, PANDA collaborations in EM calorimeters.

- **Structure:** scheelite type (tetragonal, a=5.456, c=12.020 Å);
- **Radiation length:** 8.9 mm.
Experiment @ CERN with 120 GeV e⁻

Double sided silicon detectors
1.92x1.92 cm² SDi
(300µm thick)
[6-11 µm spatial resolution]

A bending magnet (BM) to separate the charged and the neutral beam

γ-beam (photo) and e-beam calorimeters to measure the emitted photons and to discriminate e± from impurities (µ±,π±)

High precision goniometer to align the crystals on the beam.
[Few µrad of resolution]

Scintillator Trigger: S2 has an hole (3x9mm²)
Aanticoincidence

See V. Mascagna poster today - PS3-06
Experiment with 120 GeV/c electrons

A 2x55x4 mm3 strip-like PWO crystal with the largest faces oriented parallel to the (100) planes was selected for the experiment. 4 mm length along the beam direction corresponds to about 0.45 X_0.
We selected single events on SD1-2 and collected the emitted photons at the gamma-calorimeter.

Peak at 100 GeV!

Strong reduction of X_0 in the oriented cases.

We selected single events on SD1-2 and collected the emitted photons at the gamma-calorimeter.

The energy lost into pairs cannot be measured, since the magnet swiped away not only the primary particles but also the secondary electrons and positrons.

Increase of secondaries in oriented crystal

We measured a strong increment of multi-hits at the third detector, depending on crystal-to-beam orientation. Scintillators S1-S2 are used for the trigger. We selected single events on SD1-2 and measured the hits at the SD3 detector.

We measured a strong increment of multi-hits at the third detector, depending on crystal-to-beam orientation.
Increase of secondaries in oriented crystal

An electromagnetic shower has been initiated.

Effective reduction of the radiation length in the oriented cases.
E.m. shower acceleration in an oriented PWO crystal – test with SiPM*

Strong enhancement of scintillation light (peaked at a double value) for the case of axial orientation if compared to random case. The e.m. shower have been strongly accelerated by the X0 reduction, with the increase of secondaries emission.

* Preliminary results
Angular acceptance of radiation enhancement

Rotational scan around the <001> axes – along the (100) planes
Angular acceptance of radiation enhancement

The axial influence is strong in $\pm 1 \text{ mrad}$ angular range and it is maintained up to almost $\pm 2 \text{ mrad}$ ($\pm 0.1 \text{ deg}$)
COMPARISON WITH SIMULATION
Baier-Katkov quasiclassical operator method (1967-1968)

General method for calculation of radiation generated by e^\pm in an external field

The electromagnetic radiated energy is evaluated with the BK formula:

$$\frac{dE}{d\mathbf{k}} = \omega \frac{dN}{d\mathbf{k}} k \frac{\alpha}{4\pi} \frac{1}{2} \int \int (E^2 + E'^2) \left(v_1 v_2 - 1 \right) \left(\frac{\omega^2}{\gamma^2} \right) \frac{1}{2E^2} e^{-i k \cdot \mathbf{r}} (x_1 - x_2)$$

where the integration is made over the classical trajectory.

Why classical trajectory?

2 types of quantum effects:

- the quantization of particle motion $\sim \hbar \omega_0 / E$

 In crystals: negligible for electron/positron energy $>10-100$ MeV

- the quantum recoil of the particle when it radiates a photon with energy $\hbar \omega \sim E$

 NOT negligible for electron/positron energy >50 GeV
An algorithm for radiation in crystals
Integration of the quasi-classical Baier-Katkov formula

General method for calculation of radiation generated by e± in an external field

The electromagnetic radiated energy is evaluated with the BK formula:

$$\frac{dE}{d\Omega} = \alpha \frac{e^2}{4\pi^2} \int \int \frac{d\tau_1 d\tau_2}{\omega \gamma^2} \left[(E'^2 + E'^2) \left(\nu \nu' - 1 \right) + \omega \gamma\nu \right] / 2E'2 \ e^{i k' x}$$

(1)

where the integration is made over the classical trajectory.

Small angle approximation:

$$\frac{dE}{d^3k} \sim \frac{\alpha}{8\pi^2} \frac{\epsilon^2 + \epsilon'^2}{\epsilon'^2} \omega^2 C,$$

(2)

where

$$C = \left| I_\perp \right|^2 + \gamma^{-2} \frac{\omega^2}{\epsilon^2 + \epsilon'^2} \left| J \right|^2$$

Simulation results for PWO

Simulation for bremsstrahlung + pair production in agreement with experimental results for:
Random orientation
Axial orientation

Simulation for pure bremsstrahlung. In axial case, X_0 is decreased from 8.9 to 1.6 mm

GEANT4 modified simulation for a PWO crystal with X_0 reduced

The electromagnetic shower is simulated using the **Geant4** toolkit in which the cross sections for bremsstrahlung and pair production are rescaled in agreement with full BK Monte Carlo.

Electromagnetic shower length (defined as 90% of energy deposited inside the crystal) vs. beam energy, for primary electrons. Since the crystalline strong field effect increases with beam energy with a consequent X_0 decreasing, the shower length is almost constant with energy.

https://doi.org/10.1016/j.nima.2018.07.085
Shower longitudinal development

In case of oriented PWO, the maximum is shifted to the entry surface of the crystal.

Electromagnetic shower longitudinal development vs. e-beam energy.

https://doi.org/10.1016/j.nima.2018.07.085
Possible applications

- Realization of **forward calorimeters and preshowers with a reduced volume**;

- **Smart gamma-converters** for **fixed-target experiments** with reduced ratio \(X_0/\lambda_{\text{int}} \) (KLEVER proposal);

- **Light dark matter search** with fixed-target/beam dump experiments (*Idea of M. Raggi, UniSapienza*). If a dark photon is created during the shower generated by a primary electron, it can be detected only if survives after the remaining dump length. Shorter is such length, higher is the sensitivity.
Possible applications

In Astroparticle Physics: Production of **compact calorimeters** that contain the gamma e.m. showers at energies > 100 GeV **without increasing the weight** (and so the cost). With the birth of multimessenger astrophysics one can think of **pointing a telescope towards the source** (0.5°-1° acceptance) and exploit the X_0 reduction in oriented crystals.
Possible applications

In Astroparticle Physics: Production of compact calorimeters that contain the gamma e.m. showers at energies > 100 GeV without increasing the weight (and so the cost). With the birth of multimessenger astrophysics one can think of pointing a telescope towards the source (0.5°-1° acceptance) and exploit the X_0 reduction in oriented crystals.

FERMI LAT-like telescope:
- reduce the thickness of the calorimeter (and so the weight)
- reduce the thickness of the photon converters in the tracker, thus increasing the resolution.
Conclusions

• The electromagnetic showers developing along axial directions in a lead tungstate single crystal has been investigated, showing a strong reduction of radiation length depending on the crystal-to-beam orientation;

• A Monte Carlo code capable to reproduce well the experimental results has been developed and currently a first implementation in Geant4 has been carried out, thus being useful to design future experiments;

• These effect can be exploited to decrease the shower length in calorimeters for high-energy physics and astrophysics.
THANK YOU FOR THE ATTENTION!
BACK UP SLIDES
Structural characterization of PWO single crystal by x-ray diffraction showed scheelite type structure (tetragonal, $a=5.456$, $c=12.020$ Å).
Electromagnetic shower longitudinal development vs. e-beam energy.

In case of oriented PWO, the maximum is shifted to the entry surface of the crystal.

PWO as high-Z scintillator

- PbWO$_4$ (PWO) scintillation crystals introduced by INP team in 1994 are currently used by CMS, ALICE, PANDA collaborations in EM calorimeters, about 100000 crystals in total is produced.

- **PWO properties:**
 - Short radiation length (8.9 mm);
 - small Moliere Radius;
 - emission in visible;
 - cheap;
 - low light yield;
 - temperature dependent.

The small Moliere radius of PWO crystals make them ideal for use in a compact detector and their light yield outperforms that of other heavy crystals.
Baier-Katkov quasiclassical operator method (1967-1968)

General method for calculation of radiation pair production by a HE photon in an external field

\[
\frac{d^2N}{d\varepsilon d\Omega} = \frac{\alpha\varepsilon_-^2}{8\pi^2\omega\varepsilon_+^2} \left[\frac{\omega^2 |A|^2}{\gamma^2 + (\varepsilon_-^2 + \varepsilon_+^2)| \vec{B} |^2} \right],
\]

\[
A = \int_{-\infty}^{\infty} \exp\{i\varphi(t)\} dt, \quad \vec{B} = \int_{-\infty}^{\infty} (\vec{v}_\perp(t) - \vec{\theta}) \exp\{i\varphi(t)\} dt,
\]

\[
\varphi(t) = \frac{\varepsilon_-}{\varepsilon_+} (\omega t - \vec{k} \cdot \vec{r}) = \frac{\varepsilon_-}{\varepsilon_+} \int_0^t \varphi(t') dt' = \frac{\omega'}{2} \int_0^t \left[\gamma_-^2 + (\vec{v}_\perp(t') - \vec{\theta})^2 \right] dt', \quad \omega' = \frac{\omega\varepsilon_-}{\varepsilon_+}.
\]

The Constant Field Approximation (CFA) is applied to evaluate the pair production process when high-energy photons enters a crystal along the major crystal axis. However, CFA does not explain the angular dependence of the pair production rate. The BK method has the advantage to be applicable in the whole angular region.
Possible applications

In Astroparticle Physics: Production of **compact calorimeters** that contain the gamma e.m. showers at energies > 100 GeV **without increasing the weight** (and so the cost). With the birth of multimessenger astrophysics one can think of **pointing a telescope towards the source** (0.5°-1° acceptance) and exploit the X_0 reduction in oriented crystals.
Possible applications

In Astroparticle Physics: Production of compact calorimeters that contain the gamma e.m. showers at energies > 100 GeV without increasing the weight (and so the cost). With the birth of multimessenger astrophysics one can think of pointing a telescope towards the source ($0.5°-1°$ acceptance) and exploit the X_0 reduction in oriented crystals.

FERMI LAT-like telescope:
- reduce the thickness of the calorimeter (and so the weight)
- reduce the thickness of the photon converters in the tracker, thus increasing the resolution.
The main point: total radiated energy can strongly increase!

Measurement of the Total Energy Radiated by 150-GeV Electrons in a Ge Crystal

A. Belkacem, M. Chevallier, A. Clouvas, M. J. Gaillard, R. Genre,
R. Kirsch, J. C. Poizat, and J. Remillieux,
Institut de Physique Nucléaire and Institut National de Physique Nucléaire et de Physique des Particules, Université
Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France

and

G. Bologna, (a) J. P. Peigneux, D. Sillou, and M. Spighel
Laboratoire d’Annecy-le-Vieux de Physique des Particules, Laboratoire de Physique des Particules and Institut National
de Physique Nucléaire et de Physique des Particules, 74019 Annecy-le-Vieux Cedex, France

and

N. Cue, J. C. Kimball, B. Marsh, and C. R. Sun
Physics Department, State University of New York at Albany, Albany, New York 12222
(Received 11 February 1985)

We have measured the radiation emitted by 150-GeV e^- incident along the (110) axis of Ge crystals. The on-axis total radiated energy is 25 times larger than for nonaligned directions for 0.4-
mm-thick Ge. The distribution of the radiated energy versus the angle of the electron beam yields a half-width much larger than the channeling critical angle. The on-axis results confirm the predictions of the crystal-assisted radiation theory. The Born approximation to the coherent bremsstrahlung fits the data at large angles.
Study of e+/e- Pair Creation by 20 — 150-Gev Photons Incident on a Germanium Crystal in Alignment Conditions
Simulation vs previous experimental results of axial multi-volume reflection in a 2 mm Si bent crystal

Energy loss spectral intensities: \((dn/dE)*E\) of 120 GeV/c single and multi-reflected electrons

When channeling radiation becomes synchrotron-like radiation

\[\gamma \approx \sqrt{\frac{2V_0}{\varepsilon}} \geq \frac{m}{\varepsilon} \Rightarrow \varepsilon \gg \frac{m^2}{2V_0} \sim 1\div10 \text{GeV} \]

and quantum?

\(E_\gamma = E \downarrow 0 \)

Critical field: \(E_0 = \frac{m^2 c^3}{e\hbar} \simeq 1.3 \times 10^{16} \text{V/cm} \).
The trigger system

A schematic drawing of the s1-2 scintillators mounted on the Ds1 detector

The s2 scintillator has a hole (3.5x9 mm^2) and it can act as an anticoincidence (s1^ s¯2) to acquire a beam portion that matches the crystal shape thus increasing the number of events impinging on the crystal itself.
Telescope system: Silicon microstrip detectors and high precision goniometer

Double sided silicon detectors **DsX** (300μm thick)

- **Spatial resolution**: ~5-10 μm
- **Angular Resolution**: ~10 μrad

High-precision goniometer

- **Goniometer resolution**: ~few μrad
E.M. CALORIMETERS

Gamma-cal: Lead tungstate crystals as CMS endcap crystals:
 22 cm long, with a front section of 2.86×2.86 cm2 and a rear one of 2.96×2.96 cm2, for a total of \sim24.7 radiation lengths.

The e-calorimeter is formed by 12 plastic scintillator tiles and 11 lead tiles for a total of 13.07 X_0. The light produced in the scintillators is brought out by WLS fibers to a 16-channel PMT.
Experimental test at CERN SPS

On the extracted beamline H4 from the Super Proton Synchrotron, tertiary “clean” beams of electrons and positrons are available up to 200 GeV/c.
Synchrotron-like radiation in crystals

At energies > few GeV

Threshold angle: $\theta_v = V_0/m$

Radiation emission angle: $\theta_\gamma = 1/\gamma$

$\theta_\gamma \ll \theta_v$ \textit{Criterium for synchrotron radiation}
Strong field regime of Synchrotron Radiation

At energies $>10 \text{ GeV}$ (100 GeV) depending on atomic number Z

$$\mathcal{Q} \approx \sqrt{\frac{2V_0}{\varepsilon}} \geq \frac{m}{\varepsilon} \implies \varepsilon \gg \frac{m^2}{2V_0}.$$

Relevant for linear colliders, astrophysical objects like magnetars, heavy ion collisions and more. When the magnetic/electric field reaches the

Critical Schwinger QED field:

$$E_0 = \frac{m^2 c^3}{e\hbar} \approx 1.3 \times 10^{16} \text{ V/cm}$$

In the rest frame of the particle, the Lorentz contracted field can be computed as:

$$\gamma E = E_0$$

Being the Planar/Axial field $E = 10^9/10^{11} \text{ V/cm}$
CMS ECAL PWO crystals

Picture of a PbWO$_4$ 23 cm-long crystal (left) used in the CMS ECAL with its photomultiplier, and of the endcap ECAL (right) showing the crates in which the crystals are placed.
E.m. shower acceleration in an oriented PWO crystal – test with SiPM on 2018

A strip-like PWO crystal **4 mm length** along the beam direction corresponds to about **0.45 X₀**. Axis <001>.

PWO crystal coupled with a SiPM
Possible applications

In HEP:

- Realization of **forward calorimeters and preshowsers with a reduced volume**;
- **Smart gamma-converters** for **fixed-target experiments** with reduced ratio X_0/λ_{int} (KLEVER proposal);
- **Light dark matter search** with fixed-target/beam dump experiments (*Idea of M. Raggi, UniSapienza*). If a dark photon is created during the shower generated by a primary electron, it can be detected only if survives after the remaining dump length. Shorter is such length, higher is the sensitivity.

Further advantages of scintillators:

- Possibility to measure the cascade characteristics inside the crystal (e.g. NA64 active beam dump);
- Scintillators have better crystallographic quality than metals and the possibility to be produced in virtually any size.