

Crystal Channeling Experiments in the USA

U. Wienands (Argonne National Laboratory);

Channeling 2018 Ischia, IT

Channeling Experiments with Electron & Positrons in the USA

- Focusing on the radiation aspect of channeling leptons
 - Miroshnichenko et al., SLAC 1978
 - first > 10 GeV work (with positrons)
- The SLAC experiment sparked interest in the US
 - R.H. Pantell, Stanford, B.L. Berman et al., Livermore, mid-1980s:
 - Channeling radiation, 10s of MeV electrons.
 - Some theoretical notes by S. Heifets (SLAC-PUB-2137 and 2173)
 - Theoretical work by Ellison (UNM) et al. beginning in the 1980s.
- most experiments done in former USSR.
- Renaissance of interest in the field in the West
 - in light of new, very high-energy electron-positron colliders.
 - in hadron collimation and extraction (FNAL, BNL, CERN).

Electron Channeling at Fermilab

Proc. FEL2013, New York, NY, 38 (2013) (Blomberg, Piot et al.)

- NIU-FNAL-Vanderbilt-Rossendorf-LANL at HBESL
 - 4 MeV, ≤ 10 nC *e*⁻, 10μm (111) Diamond crystal
 - channeling radiation (≈ 1 keV)

Fermilab

Proc NAPAC2016, Chicago, IL, 428 (2016), Halavanau, Sen, Shiltsev et al.

- NIU-FNAL-BYU-KU-Sokendai collaboration (at FAST)
 - 50 MeV, <100 fC/pulse, 40 μm Diamond crystal, Rossendorf goniometer (from ELBE). X-ray generation, beam collimation
 - later, possibly a flat pyrolitic graphite crystal is planned (HOPG)

Resuming Channeling Experiments @ SLAC

- SLAC joined the US-LARP program (LHC Accelerator Research Prog.)
 - Beam collimation one area of LARP interest (for SLAC in ILC context).
 - SLAC, incl. this author, joined the UA9 collaboration of Scandale et al.
- FACET was being commissioned, providing an exp. facility
- SLAC + Aarhus (Uggerhøj) + Ferrara (Mazzolari) + CalPoly (Holtzapple)
 - T513 Collaboration (Channeling & VR, ESTB, e⁻)
 - E212 (Radiation & crystal undulators, FACET, e⁺ and e⁻)
 - T523 (γ-Ray production, ESTB, e⁻)

FACET and the End Station A Test Beam (ESTB) 2011...2016

- ESTB: up to 15 GeV e⁻, 5 Hz, ≤ 200 pC/pulse
 - "pulse stealing" from LCLS
- FACET: 20 GeV e⁺ or e⁻, 2 nC/pulse, 10 Hz, "20³ µm³"
- control of optics, momentum spread
 - both can provide relatively parallel beam (<10 µrad)
 - FACET has a e⁻ spectrometer downstream; ≈ 0.1% resolution

Deflection Experiments (T513, ESTB)

- Measurement of channeling parameters of 3...14 GeV e⁻
 - bent crystal from U. Ferrara

Main crystal features

- Crystal thickness 60±1 µm
 Once the crystal will be back in Ferrara we will measure crystal thickness with accuracy of a few nm.
- (111) bent planes (the best planes for channeling of negative particles).
- Bending angle 402±9 µrad, ρ =0.15 m (x-ray measured). If needed I can provide a value with lower uncertainty.

Crystal mounted in "Kraken" Chamber in ESA

Crystal-Rotation @ 4.2 GeV

Wienands et al., Physical Review Letters 114, 2015, 074801

(Movie credit: T. Wistisen)

https://www6.slac.stanford.edu/news/2015-02-25-slac-led-research-team-bends-highly-energetic-electron-beam-crystal.aspx

Triangle plot (10.4 GeV)

Dechanneling Length of e

Volume Reflection Angle

Scattering in "Free" Direction

- MS in channeling is enhanced by ≈ factor 2.
 - expressed in X_0 , it is a factor 1/4.

E212: First Channeling Data of 20 GeV e⁺ in Bent Crystal

Raw data

Analysis of the "Quasi-Channeling Oscillations"

A. Sytov et al., Eur. Phys. J. C (2016) **76**: 77 Wistisen et al., Phys. Rev. Lett. **119**, 024801 (2017)

$$\theta_{def} = (\theta_b + \theta_t) - \sqrt{\frac{2d_0(n-1)}{R} + \frac{2d_s}{R}}$$

$$\theta_b = 402\pm 9 \,\mu\text{rad}, R = 0.15 \,\text{m},$$

 $d_s = 3.14 \text{Å (known)}, d_0 = 4 \,d_s$

Summary of Deflection Results

- Channeling efficiency ≈ 18...24 %, VR up to 95%
- Dechanneling length ≈ 40...60 µm
 - roughly independent of the beam energy in our range
- Surface transmission 57% (6.3 GeV)...65% (3.35 GeV)
 - calc: 57% @ 6.3 GeV
- Scattering is enhanced in the vertical plane for channeled particles
 - by roughly a factor 2 (X0 -> X0/4)
- Quasi-Channeling oscillations observed with e⁺ (and hints with e⁻).
 - dechanneling length with electrons approx. 350 μm.

VR Collimator Concept

• The T513 data can be used to investigate beam collimation:

APS-U: 6 GeV, 2 T513 crystals in series

pdf to generate deflections

Radiation Experiments

ESTB Setup augmented with γ counter and deflector.

Top View, not to scale $0.6 \, \text{m}$ 13 m 33 m Crystal PR2 WS₁ WS2 YAG 3C2 8.25 m 19 m Beam axis Counter PEP-ÌI BLM Ce:YAG Vertical Wire Screen vertical slit bend mag. screen Collimator scanner scanner collimator laser 1 Side view of YAG screen screen 1.04 m Beam axis CCD camera Scale

High-Intensity spectra

many photons per linac pulse energy-weighted pulse height spectra of $\sum E(\gamma_n)$

Monolithic Undulator

Large amplitude, long period (LALP, Solov'yov et al.):

Small amplitude, short period (SASP, Kostyuk 2014):

"Slow" betatron oscillations, fast undulations

- 37 μm long, 120 periods, (110)
- E_{γ} ≈ 0.7 GeV @ 6.2 GeV e^{-}
- $-E_{\gamma}$ ≈ 4 GeV@ 16.1 GeV e^{-}
- K ≈ 0.07 Si_{1-x}Ge_x-graded composition

Expected spectra, 16 GeV

(Wistisen, 2016)

Comparison of spectrum of similar crystal at 855 MeV (MAMI expt.,

Wistisen et al., PRL 112, 254801 (2014))

Angular Distribution Aligned – Amorph

T523 and E212 and Beyond

- ESTB & FACET have been off since late 2016
- ESTB is on-line again until end of 2018.
- FACET is off-line until end 2019.
 - e⁻ only, no e⁺ until 2022 or 2023
- We will have our next E212/T523 run in November
- A Dark Matter experiment (DASEL) is supporting creation of a GEANT model of the beam line => better understanding of the backgrounds.
- A group from CERN is interested in radiation experiments with W crystals
 - e⁺ source study for CLIC and/or FCC-ee or ILC

Planning for FACET-II as a Community Resource

- FACET stopped running in April 2016 to begin LCLS-II construction
- Over the next few years FACET-II will add new capabilities:
- low emittance, small - LCLS style photoinjector with state of the art electron beam
 - Flexibility e.g. low-charge mode or 'two color' operation for two-bunch PWFA
 - Nominal e⁻ parameters: 10GeV, 2nC, 15kA, 30Hz (**2019**) —— Beam quality
 - Nominal e⁺ parameters: 10GeV, 1nC, 6kA, 5Hz (**2021**) Positron Acceleration
 - External injection Staging studies, ultra-bright sources
- Continue to plan experimental program with Science Workshops

FACET-II has been designed to address many of the R&D challenges of the Beam Driven Roadmap

T513/E212/T523 Collaboration

- U. Wienands (Argonne National Laboratory, US);
- B. Benson* (now MIT), **T. Markiewicz**, T. Smith, M. Hogan, S. Gessner* (SLAC, US);
- U. Uggerhøj, R. Mikkelsen* (U. Aarhus, DK);
- T. Wistisen* (now Max-Planck Institute, Heidelberg, D)
- A. Mazzolari, E. Bagli*, L. Bandiera*, G. Germogli*, A. Sytov*, V. Guidi (U. Ferrara, IT);
- R. Holtzapple, S. Tucker*, K. McArdle* (CalPoly, US)

My thanks go to our collaborators; they are the ones who made these experiments work.

To the funding agencies: US DOE, US NSF, Danish Council for Independent Research FNU, INFN

And to Prof. Dabagov for his support.

