

Experimental Polarization Control of Thomson Scattering X-ray Source

Hongze Zhang Accelerator Laboratory of Tsinghua University Sep. 27, 2018

Outline

- Thomson Scattering
- Experiment – Setup
 - Design
- Results

Thomson Scattering

- Thomson Scattering
 - Interaction between photon and electron
 - Photon energy «electron energy (MeV)
- Features
 - Short pulse, high brightness, quasi monochromatic, wavelength continuously tunable(keV~MeV), polarization controllable.
- Application prospects
 - Life Science, biophysics, nuclear physics, X-ray polarization detector calibration and so on.

Control

Quarter-wave plate

Parabolic mirrors

Tsinghua Thomson Scattering X-ray Source

Parameters				
Photon energy/ keV	~50			
Electron energy/ MeV	46.7			
Laser wavelength/ nm	800			
Count/per pulse	~107			

Y. Du et al., Nucl. Instr. Meth. A 637, S168 (2011).

Polarization Measurement

- Polarization measurement methods
 - Photoelectric effect: Soft X-ray
 - Compton scattering effect: Hard X-ray or Gamma ray
- Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = r_e^2 (1 - \sin^2\theta \cos^2 f)$$

$$\frac{ds}{dW} = r_e^2 (1 - \sin^2 q \frac{\cos^2 f + a \sin^2 f}{a + 1})$$

- The cross section distribution is depended on factor a
- *a*: the ratio of $E \downarrow x \, , E \downarrow y$
- The distribution of scattered photons in space→X-ray polarization

Incident X-ray

θ=90°

arXiv:1408.5899v1

Experiment Design

Absorption / Compton scattering cross section

Photon energy	Material	Absorption (cm ² /g)	Compton scattering (cm ² /g)
50keV_	PE	0.0089	0.1880
	С	0.0104	0.1630
	AI	0.1720	0.1500
	Fe	1.7000	0.1360
30keV	PE	0.0489	0.1930
	С	0.0571	0.1650
	AI	0.8720	0.1460
	Fe	7.7600	0.1290
10keV	PE	1.7800	0.1670
	С	2.0800	0.1350
	AI	25.6000	0.1060
	Fe	169.0000	0.0854

Size: radius1.5-cm, height 6-cm Aluminum Ring: Inner radius 1.5cm, outer radius 5-cm, thickness 0.5cm Record scattered photons with

image plate

Simulation & Experiment

Experiment Results

3

4

 $\lambda = 0.1047$ P = 0.1836