
Radiation on Conducting Sphere and 
Hemispherical Bulge in Conducting Plane: 

Further Development 
 

N.F. Shul’ga1, V.V. Syshchenko2 
1NSC KIPT, Kharkov, Ukraine 

 

2Belgorod National Research University, Russian Federation 

Diffraction radiation (DR) as well as the transition radiation (TR) of a 
charge on a perfectly conducting sphere had been studied in 
 
•  N.F. Shul’ga, V.V. Syshchenko, E.A. Larikova // Nucl. Instrum. Meth. B 402 (2017) 167 
(Proceedings of Channeling-2016). 

using the method of images known from electrostatics. In the paper 
•  V.V. Syshchenko, E.A. Larikova, Yu.P Gladkih // JINST 12 (2017) C12057 (Proceedings 
of RREPS-2017). 

DR on the hemispherical bulge in a perfectly conducting plane had been 
considered using the same approach.  



Here we shall discuss three topics: 

 
1.  Polarization of DR on the sphere as well as on the 

hemispherical bulge 

2.  TR on the hemispherical bulge 

3.  Coherent radiation from a bunch of charged particles 
 
Previously we shall briefly describe our approach. 



One of the ways to describe these types of radiation is the application of the boundary 
conditions to the Maxwell equations solutions for the field of the moving particle in two 
media. It becomes evident that the boundary conditions could be satisfied only after 
addition the solution of free Maxwell equations that corresponds to the radiation field. 
The conditions on the boundary between vacuum and perfect conductor could be satisfied 
in some cases via introduction of one or more fictitious charges along with the real 
charged particle; this approach to electrostatic problems is known as the method of 
images, see, e.g.,   

J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1999. 
Namely the method of images had been used in the pioneering paper  

V.L. Ginzburg, I.M. Frank // J. Phys. USSR 9 (1945) 353. 
where TR on a metal plane had been predicted. The method of images had been used also 
in  

G.A. Askaryan // JETP 29 (1955) 388 (in Russian). 
for consideration of TR under passage of the particle through the center of the perfectly 
conducting sphere in dipole approximation. The authors of 

A.C. Amatuni, A.M. Oganesyan // Izv. Akad. Arm. SSR, XIV, No. 5 (1961) 99 (in Russian). 
used that approach for description of DR on the sphere, however, also in dipole 
approximation that leads to overestimation of the effect. 



Method of images in DR description 

Consider the real charge e0 passing by the grounded conducting sphere of the radius R. Its 
“image” e(t) has to be placed in the inverse conjugated point with coordinates x(t), y(t), z(t): 

So, while the incident particle moves uniformly, the “image” e(t) will move accelerated. The 
radiation produced by non-uniform motion of the fictitious charge will be described by well-
known formula 

In the case of hemispherical bulge on a conducting plane we have three “images”, two of 
which, e(t) and  -e(t), move accelerated.  



The integrands are smooth functions, and the integration can be easily performed 
numerically, that leads to the spectral-angular density of diffraction radiation in the form 

where the angular distribution ΦDR(θ, φ, ω) looks as follows: 

DR on sphere:                                                        DR on hemisphere: 

The angular dependence as direction diagram of DR intensity on the sphere (left) and hemisphere (right) 
for the passage of the real charge under bx = R+0 and by = 0 (sliding incidence, when DR intensity is 
maximal for the whole range of wavelengths) and Rω/v0 = 2.4 (this choice is due to the maximum of DR 
on hemisphere spectrum (see below) falls on ωb/v0 � 2.4 and b = R in the given case). This shape of 
the directional diagram is typical; for higher frequencies the slight forward-backward asymmetry 
increases. 



In non-relativistic (v0 << c) and low-frequency (� << cb / R2  or � >> 2�R2 / b) 
case we can neglect the values marked yellow in the I formulae: 

for DR on the sphere that gives 



and 

for DR on the hemispherical bulge that gives 

This approximation is rather good, as we can see comparing the numerical 
spectra and the approximated analytical ones: 



Spectral density of DR on the sphere 

(upper panel) and hemisphere (lower 

panel) under by = 0 and bx = R + 0 

calculated using analytical formula (blue 

curve) and via numerical integration (red 

circles). Dashed curve presents the 

d i p o l e r e s u l t b y A m a t u n i a n d 

Oganesyan. 



DR polarization on the sphere 
Choosing two polarization vectors                         and calculating the scalar products 
            and           , we can obtain the Stokes parameters and hence the complete 
information about the radiation polarization. We found that the radiation is 100% 
polarized with the following characteristics for different radiation angles: 
           circular polarization                linear polarization 



DR polarization on the sphere 
Here we mark the points of 100% circular polarization (colored) and 100% linear 
polarization (black belt) on the radiation intensity directional diagram. Note that the 
directional diagram’s symmetry plane (as well as the plane of 100% linear 
polarization) is the plane that contains the center of the sphere and the incident 
particle’s trajectory. So, the directional diagram rotates around z axis with the 
incident particle’s trajectory: 

       bx = R+0  and  by = 0                                                     bx = by = R /� 2 + 0 
 
That opens the possibility to detect the relation between the components bx and by 
of the 2-dimentional impact parameter of the incident particle using the 
polarization-sensitive detector: 



          by = 0                                                             by  >  0 

In the case  by = 0  we detect 100% linear polarization while in the case  by  >  0   or  by  <  0 we detect 
elliptical polarization, left or right. 



DR polarization on the hemispherical bulge 
 
This situation is simple: the radiation is linearly polarized in the plane that 
contains the vectors k and ex : 



TR on the hemispherical bulge 
 
Transition radiation changes the diffraction one when the incident particle’s 
trajectory crosses the target boundary. The simplest manifestation of TR 
production is the origin of the radiation in the hard range of the spectrum: 



TR on sphere vs hemisphere… 

Directional diagrams for TR on the sphere (left) vs hemisphere (right), v0  = 0.1c,  
bx = R /� 2,  by = 0,  R�/v0  =  1 (a),  10 (b). 



Directional diagrams for TR on the sphere (left) vs hemisphere (right), v0  = 0.1c,  
bx = R /� 2,  by = 0,  R�/v0  =  50 (c),  100 (d). 

TR on sphere vs hemisphere… 



TR on the sphere (left) vs hemisphere (right), v0  = 0.1c,  bx = R /� 2,  by = 0, R�/v0  =  
200. 
 
Note that in the high frequency domain the transverse size of the particle’s Coulomb field  
v0 /�  << R  that permits to neglect the metal surface curvature. But in this case we can 
extend our approach to relativistic incident particle! 

Complex character of interference of the contributions from 4 charges leads to just more 
sophisticated angular distribution of TR on the hemispherical bulge than on the sphere: 

TR on sphere vs hemisphere… 



Relativistic case: by =  bx = 0.2706R (that is sin(�/8) /�2), Rω/v0 = 20, v0 = 0.999c. 

The same for by =  bx = 0.6533R (that is sin(3�/8) /�2). 



TR on hemisphere, ultrarelativistic case: v0 = 0.9999c,  Rω/v0 = 20,  
by =  bx = sin(�/8) / �2 (left),  by =  bx = sin(3�/8) / �2 (right). 

The genesis of these pictures is rather clear: each charge, real or fictitious, produces 
under the interaction with the metal surface the typical TR cone of radiation in its 
forward direction. However, the radiation in the z direction is suppressed here due to 
destructive interference of the corresponding contributions. 



DR from a bunch of incident particles on the hemisphere 
 

Of course, the radiation from the bunch could be calculated numerically, 
but here we consider two situations that permit simple analytical solution. 
 
1. “Pencil”-bunch with charge density distribution along the 
direction of incidence 

N is the total number of particles in the bunch, z’ is the coordinate in the 
internal bunch frame. In this case we obtain the spectral-angular 
distribution of the radiation from the bunch in the form 
 
 
 
 
Note that the charge distribution in the pencil bunch has no influence on 
the shape of the radiation angular distribution, only the total intensity 
under given frequency depends on it. 



DR from pencil bunch on the hemisphere 

Spectrum of DR from the pencil bunch with uniform (red), Gaussian 
(blue) and double Gaussian (magenta) density for L = 2R. Dashed line 
corrsponds to the point charge. 



2.    Another situation that permits simple analytical solution is the 
uniform “pencil”-bunch oriented along y axis with the length Ly >> R: 

Here we obtain simple exponential dependence of the radiation intensity on the 
impact parameter, also without influence on the angular distribution shape:  

This result can be easily generalized to the case of wide charge distribution in the 
bunch along x axis.  



THANK YOU FOR YOUR ATTENTION! 





The perfect conductor approximation means the possibility of the metal’s electrons 

instantly trace out the changes of the external electric field to meet the requirement of 

zero tangential component of the electric field on the metal surface. It is valid for the 

frequencies less than the inverse relaxation time �-1 for the electrons in the metal. For 

instance, �-1 = 5�10-13  s-1 for copper, so the results obtained surely could be applied 

up to THz and far infrared range.  

Concluding remarks #1: Range of validity 

On the other hand, Ginzburg and Tsytovich 

say: 

“In fact, for the frequencies not higher the 

optic ones a good metal mirror (e.g. copper 

or silver) is rather close to the ideal one.” 
V.L. Ginzburg and V.N. Tsytovich,  
Transition Radiation and Transition Scattering,  
Nauka, Moscow, 1984 (in Russian);  
Adam Hilger, New York–London, 1990 (in 
English). 

This means the applicability of the method of 
images also in the visible domain.  
However, the surface plasma oscillations also 
could be important here that needs further 
investigation. 



The difficulty lies in the geometric nature of the method of images: 
we can fit the fictive charge to meet the zero boundary condition on the 
sphere for the simple Coulomb field of slow incident particle, but not for 
the relativistically compressed one.   

The only possibility to do something in relativistic case is to consider 
the high frequency limit, where the characteristic size of the Coulomb 
field, v0�/�, is much smaller than the sphere radius R. Here we can 
neglect the metal surface curvature and consider the reflection of the 
incident field in the locally plane mirror. 

However, we have a difficulty also in this case: the kinematic velocity 
of the fictive charge is not consistent with the degree of the relativistic 
compression of the Coulomb field of the incident particle. The resulting 
discrepancy in Lorentz factor values of the real and fictive charges is 
negligibly small only for the impact parameters extremely close to the 
sphere radius, b = R+0 , namely 

1 – R / (b2 + v0
2t2)1/2  << �-2 / 4  has to be… 

Concluding remarks #2: What can we do in relativistic 
case? 



On this part of the trajectory the Loretz-factors are close together. Due to 
the constant acceleration of the fictive charge we expect synchrotron-like 
radiation. 



Summary: 
•  The radiation emitting under interaction of non-relativistic particle 

with a hemispheric bulge in the perfectly conducting plane is 
considered. 

•  The method of images leads to precise description of the radiation 
in this case. The integration in the resulting formulae can be easily 
performed numerically. 

•  The method can be also applied to relativistic incident particle, but 
only for the radiation produced from the short part of the particle’s 
trajectory near the top of the (hemi)sphere in the particular case of 
extremely close fly of the particle by the (hemi)sphere top.  


