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1. Kinematic characteristics of channeling particles in the so called
accompanying reference system (ARS);

Consider the Lorentz transformations for energy-momentum from the laboratory coordinate system (LCS) to the so called
accompanying reference system (ARS):

pixl = plx=V/cl2 ENA-VI2 fc12 piyt = ply;,  plzl'= plz, EI' = E=Vplx NV1-V12 Jc12 where

E is the energy, »ix is the longitudinal momentum of the channeling particles in the (LCS); ARS moves with the velocity V=pux
cf2 /E .

Substituting velocity V in the Lorentz transformations, we get:
plxt =0,  plLl = pl1 ; Er = Vpli12 c12 +ml072 ct4 .
The last expression for energy of the channeling particle in the non-relativistic case can be rewritten in LCS as:
ET 2 mloct2 + pli12 f2mi0
Remark. Taking into account an expression for the Lindhard critical angle GlL = V2010 JE

the transversal motion of the channeling particles in the initial state can be considered as nonrelativistic at energies E < o072
cf2 2000
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2. Axial channeling electron as a 2D model of the atom;

The ultra-relativistic electron with energy E up to ~10"" eV moving
along the crystallographic axis in an axial channeling mode, can be
considered as a non-relativistic 2D-atom, possessing the discrete spectrum
of energies and orbital momentum, if the electron motion is considered in
the so called accompanying reference system (ARS), moving parallel to the
channeling axis with the velocity, equal to the longitudinal component of the

electron velocity.
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3. The average continuous potential of axial channeling [4];

o8 S.B. Dabagov, N.P. Kalashnikov /Nuclear Instruments and Methods in Physics Research B 402 (2017) 67-70

screening radius, then the average potential of isolated row cam
be defined by [2]
U(p) = (2Z1Z2€* /d)Ko(p/Ro), G
where d is the interatomic distance, Ko(p/Ro) is the Macdonald
function. Thus, as a result of averaging, it turns out that the row
potential depends only on the distance between the particle and
the channeling axis.

The wave function of axially channeled electron satisfies the|
Dirac equation

REEE e w,
[—27 /rl<m] () = E¥P) &

30| o e e i Despite simple analytical dependence of the potential (6) upom
| the distance to the crystallographic row, the general analytical
e | solution for the wave functions of Eq. (5) is quite tedious problem-
V.38 g ¥ To resolve the task one can use the approximation of average con-
£ tinuous potential in a form of Coulomb potential
Fif. 1a. The continuous aversge potential U (1) of the interaction of | MeV energy
electrons with the atomic row (111) of a single crystal N=1, 0 are the O(p) o 1Z2¢*Ro e
franerie eneray levels: 1. 2. nd 3 are the wave nerions e e e £ dp
of 15, 25, 2p, respectively
ions of trz ing motion in the field
() ire e as ol awrs
VE—§ § Vz, s.€X| 27ig T — 27ig, vt E -
G s XD (2R, A we) W (p) — Fexp(ime)x™ exp(—x/2)L3" (%), )
""L"'exp( 27ig, 1), where x = py/SEIELT. F = \/mdbrr L3"(x) is the generalized

Laguerre polynomials [9], F is the constant determined by the nor-
malization condition for the eigenfunctions [ ¥} (0)¥w.m (p)
S Smar. The eigenvalues and the number of electron bound motion

@ levels for the potential (4) are correspondingly expressed by the.
expressions

i, F — 2milz/a)(l = 0,1,2, .

The first term with [ = 0 in (4) corresponds (o the average con- = SR

Bl DOtentil, which ensuresithe Channeling moton 121 Twe =5 GRmeiRmza) M i o
assume that the interaction of a charged particle with an isolated Zeaze 1°°
lattice atom describes by the screened Coulomb potential N’ = Nmax +1 = [ 2&‘U(0705d)] +0.5, (8)
Uo(r) = (Z1Zz€? /r)exp(—7/Ro), (3)  where Nya is the maximal bound state quantum numbe:

: ¥ TewoSlilbointeristed (o considor thiciase when there are il
where z, is the charge of the lattice atom nucleus, Z; is charge of  (vo anergy levels of the (ransverse motion. For simplicity, we
the incident particles, me?(z/* + z2/*)"*h "2 is the reciprocal assume that nonrelativistic electron (y ~ 1) moves in the regime.

T T 25 Gsogrrad
16, The characteristics of the bound states of electrons with 1 MeV enersy whiich are nceraceing with an atomic row (11 1) of the single crystal Si: (Ieft) ~ population
b.2 %

probability density for channeled states 1  (right) - population probability density for channeled states 15, 25, 35, 2p depending on the entrance angle respectively the
axis (11 1) [3

The continuous interaction potential V(r ) of electrons having an energy of 1 MeV with the
atomic row <111> of the single crystal Si: N = 1; 0 are the eigenenergies levels;
1, 2, and 3 are the wave functions of the strongly bound states of 1s, 2s, 2 p, respectively.
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3. The averaae continuous potential of axial channelina [41;

‘Vn: ) oms. ed.

The characteristics of the bound states of the electrons with energy Ele =1 MeV
when interacting with an atomic chain <111> of the single crystal Si :

a) is the distribution probability density for the states of 1s, 2s, 2 p;

b) is the probability density function of the states population 1s, 2s, 3s, 2 p
depending on the entrance angle respect to axis <111>.
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4. The principle of detailed balance.

Let's consider the photorecombination (radiative recombination)
process of the channeling particles: X + Y — XY + hw, which is a
reversal process vis-a-vis the photoelectric effect: hw + XY — X + Y.

In accordance with the principle of detailed balance [6-7], the relation
between the cross-sections of these processes, as their definition has
the form: glrecom /alph = glrecom /giph - jiph /jlp , where glrecom,
giph are the statistical weights of the final states which correspond to
the recombination process and the emission process respectively;
where /ip/ and jip are the fluxes of the photons and the channeling
particles consequently with a single photon in the given volume.
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5. The cross-section of electron recombination in two-dimensional potential
with a photon emission and electron transition into any bound state;

In the accompanying reference system (ARS) (which is moving with
the velocity I'= pl|| cT2 /£I1 ) the electron possesses the
nonrelativistic energy £/L , depending on the entrance angle of the
particles in a single crystal with respect to crystallographic axis.

The process of electrons photorecombination with photon emission
and electron transition into the bound state with the main quantum
number n (the bound state!) can be seen as a bremsstrahlung
process of a photon by the electron. The bremsstrahlung differential
cross-section of the electron with the transversal motion energy &/1
on the crystallographic row potential with the photon emission hw can
be written as: dolBr = 8zna(Za)12 /3vV3 1/ell mcl3 dw/iw.
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5. The cross-section of electron recombination in two-dimensional potential
with a photon emission and electron transition into any bound state;

For the photorecombination process from the conservation law of energy we have hw = (-sin) + =1,
where ein=-£l0 1/212 is the eigenvalues of transversal energy in two-dimensional problem (see [4] p. 19)
(by the way, &0 ~y= £/mcr2  for the axial channeling electron).

Thus, for the electron recombination cross-section in two-dimensional potential with the photon emission
and an electron transition into the state with the main quantum number n we get:

oglrecom= |dolBr /dn|= 8na(Za)12 /3V3 &£l0 /mcl3 ell n13hR w.
(this expression is called the Kramers formula [13])
Assuming that the energy of the bound electron can be expressed as siz=-<i0 1/212 , where

£l0 = mc12 Z12 et4 RITF12 s2072 d12 Y [4], we may rewrite dw = - &0 @n/mn13 , and the electron recombination
cross-section is

aglrecom= |dolBr /dn|= 8ra(Za)12 /3V3 &£l0 /mc13 nh12 w(hwnl2 —£l0) .
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5. The cross-section of electron recombination in two-dimensional potential
with a photon emission and electron transition into any bound state;

The photorecombination cross-section of electrons in two-dimensional potential
with the photon emission and electron transition in any bound state we can get if in
the last formula to sum over all the main quantum numbers n (1<n<zimax) (J17

nimax i#dolrecom /dw — [1Tnimax #dolrecom /dw) .

aglrecom = Yn=1Tnimax i |dolBr /dn | = Sn=1Tnimax i8na(Za)12 /3V3
&l0 /mcT3 h72 wn(hwnl2 —£I0)

where ndmax= V—mA12 Z12 et4 RITF12 2012 d12 U(dir /2) —1/2 ;(Lis
the fitting parameter that is selected so that the atomic chain potential was close to
the Lindhard potential; Z is the atomic number of a single crystal).
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5. The cross-section of electron recombination in two-dimensional potential
with a photon emission and electron transition into any bound state;

The radiation spectra of relativistic electrons in tungsten
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6. The connection of the recombination cross-section and
the photoelectric effect cross-section;

Write the statistical weights of the states under consideration:
girecom = glXV 2 Ank12 dk/2m)13 ; glph = giX glY Anqg2 dg/2n)13

where gix, gi¥, gixv are statistical weights which correspond to the internal motion of
these particles: X is a quasi-free (the initial state) particle, Y is the crystallographic axis
potential, XY is a channeling (a bound particle in the axial mode channeling) particle, %
is the photon wave vector, ¢ is the wave vector of the particles relative motion.

Suppose that the photon flux in the volume V (if we have one photon) is jip%2 = ¢/V, and
the particles flux (in the presence of a single particle in the volume V) equals /i»p = v/V,
where v = h g/u is the relative velocity, and u is the reduced particles mass. By using
expression k= w/c for photons and the conservation law for energy: hw = &l1z+ h72
g12 /24, Where si17n is the bound energy of the particles in the axial channeling mode, y is
the reduced particles mass, we find the connection between the recombination cross-
section and the photoelectric effect cross-section: airecom = 2 k12 /q12 giX¥V /giX gl¥
aglph.
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6. The connection of the recombination cross-section and
the photoelectric effect cross-section;

The last expression refers to the total cross-sections. An analogous
expression can be obtained for differential cross-sections: 74
aglrecom /diNk = kT2 /qT2 glXV /glX glV dolph /d2lqg .

The connection for the differential cross-sections refers to processes in
which the photon is emitted (or absorbed) with the specific polarization;
so in the last expression there is no multiplier "2". Since we do not
consider the spin states of the channeling particles and the spin state of
a crystalline lattice, we can put statistical weights of the channeling
electron and a crystalline lattice equal to unit: glX = gl¥ =1. The
statistical weight of the bound channeling state gJX}V is determined by
the degeneration degree of the bound state of the transversal motion of
the channeling particles with energy &l17, i.e. (272 ).
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7. The photorecombination cross-section in the ultra-relativistic case;

We use the connection of the photorecombination cross-section with
the photoelectric effect cross-section:

olrecom = 2 k12 /q12 glXY olph,

where ailpi is the photoelectric effect cross-section, which in the ultra-
relativistic case [6-10] can be written as [10]:

olph =3/4 U015 (mcT2 /h\w)8meT4d /3mT2 cT4 ,

where 710 is the fitting parameter in the continuous potential of the
crystallographic chain (740 ~ze72 ) [4].
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8. Discussion of the results. Conclusions;

The expression W(R2) dQ = eT2 hw/2am12 c13 | Dinl nlTk.e |72 dQ
represents the probability that a channeling particle transfers from state n to
state »1" and emits photon per unit solid angle dQ with the frequency w is
equal to win,n!” and polarization e. The calculation of the matrix element
Dinl ,nTk,e requires to use the eigenfunctions of the channeling particles
uln and ulnt in the field of the continuous potential of the crystallographic

axis, causing photon emission.
In the relativistic case, the Dirac relativistic spinor wave functions should be
used for the eigenfunctions #dn and udnT , and momentum operator p

nt ™~elikR a leuln dr
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