The Electrons Capture into the Axial Channeling State as the Radiative Recombination Effect

Badreeva D.R., Kalashnikov N.P., Olchak A.S.

National Research Nuclear University MEPhI
CONTENTS

1. Kinematic characteristics of channeling particles in the so called accompanying reference system (ARS);

2. Axial channeling electron as a 2D model of the atom;

3. The average continuous potential of axial channeling;

4. The principle of detailed balance.

5. The cross-section of electron recombination in two-dimensional potential with a photon emission and electron transition into any bound state;

6. The connection of the recombination cross-section and the photoelectric effect cross-section;

7. The photorecombination cross-section in the ultra-relativistic case;

8. Discussion of the results. Conclusions;

9. References.
1. Kinematic characteristics of channeling particles in the so called accompanying reference system (ARS);

Consider the Lorentz transformations for energy-momentum from the laboratory coordinate system (LCS) to the so called accompanying reference system (ARS):

\[
p_{ix}' = p_{ix} - V/c^2 \sqrt{1 - V^2/c^2} ; \quad p_{iy}' = p_{iy} ; \quad p_{iz}' = p_{iz} ; \quad E' = E - V p_{ix} \sqrt{1 - V^2/c^2} ; \text{ where}
\]

E is the energy, \(p_{ix} \) is the longitudinal momentum of the channeling particles in the (LCS); ARS moves with the velocity \(V = p_{ix} c^2/E \).

Substituting velocity V in the Lorentz transformations, we get:

\[
p_{ix}' = 0 ; \quad p_{i\perp}' = p_{i\perp} ; \quad E' = \sqrt{p_{i\perp}^2 c^2 + m_0^2 c^4} .
\]

The last expression for energy of the channeling particle in the non-relativistic case can be rewritten in LCS as:

\[
E' \cong m_0 c^2 + p_{i\perp}^2 / 2 m_0
\]

Remark. Taking into account an expression for the Lindhard critical angle \(\theta_{i\perp} = \sqrt{2U_0 / E} \), the transversal motion of the channeling particles in the initial state can be considered as nonrelativistic at energies \(E \leq m_0 c^2 / 2 U_0 \).
2. Axial channeling electron as a 2D model of the atom;

The ultra-relativistic electron with energy E up to $\sim 10^{11}$ eV moving along the crystallographic axis in an axial channeling mode, can be considered as a non-relativistic 2D-atom, possessing the discrete spectrum of energies and orbital momentum, if the electron motion is considered in the so called accompanying reference system (ARS), moving parallel to the channeling axis with the velocity, equal to the longitudinal component of the electron velocity.
3. The average continuous potential of axial channeling [4];

The continuous interaction potential \(V(\mathbf{r}) \) of electrons having an energy of 1 MeV with the atomic row \(<111>\) of the single crystal Si: \(N = 1; 0 \) are the eigenenergies levels; 1, 2, and 3 are the wave functions of the strongly bound states of 1s, 2s, 2p, respectively.
3. The average continuous potential of axial channeling [4];

The characteristics of the bound states of the electrons with energy $E_{le} = 1$ MeV when interacting with an atomic chain $<111>$ of the single crystal Si:

- a) is the distribution probability density for the states of 1s, 2s, 2p;
- b) is the probability density function of the states population 1s, 2s, 3s, 2p depending on the entrance angle respect to axis $<111>$.
Let's consider the photorecombination (radiative recombination) process of the channeling particles: $X + Y \rightarrow XY + \hbar\omega$, which is a reversal process vis-à-vis the photoelectric effect: $\hbar\omega + XY \rightarrow X + Y$.

In accordance with the principle of detailed balance [6-7], the relation between the cross-sections of these processes, as their definition has the form:

$$\frac{\sigma_{\text{rec}o}}{\sigma_{\text{ph}}} = \frac{g_{\text{rec}o}}{g_{\text{ph}}} \cdot \frac{j_{\text{ph}}}{j_{\text{p}}}$$

where $g_{\text{rec}o}$ and g_{ph} are the statistical weights of the final states which correspond to the recombination process and the emission process respectively; where j_{ph} and j_{p} are the fluxes of the photons and the channeling particles consequently with a single photon in the given volume.
The 8-th International Conference

CHANNELING 2018

5. The cross-section of electron recombination in two-dimensional potential with a photon emission and electron transition into any bound state;

In the accompanying reference system (ARS) (which is moving with the velocity $V = p \parallel c \uparrow 2 / E \downarrow 1$) the electron possesses the nonrelativistic energy $\epsilon \perp$, depending on the entrance angle of the particles in a single crystal with respect to crystallographic axis.

The process of electrons photorecombination with photon emission and electron transition into the bound state with the main quantum number n (the bound state!) can be seen as a bremsstrahlung process of a photon by the electron. The bremsstrahlung differential cross-section of the electron with the transversal motion energy $\epsilon \perp$ on the crystallographic row potential with the photon emission $\hbar \omega$ can be written as: $d\sigma_{Br} = \frac{8 \pi \alpha (Z \alpha)^{\uparrow 2}}{3 \sqrt{3}} \frac{1}{\epsilon \perp} mc^{\uparrow 3} d\omega / \hbar \omega$.
5. The cross-section of electron recombination in two-dimensional potential with a photon emission and electron transition into any bound state;

For the photorecombination process from the conservation law of energy we have \(\hbar \omega = (-\varepsilon \downarrow n) + \varepsilon \downarrow \perp \),

where \(\varepsilon \downarrow n = -\varepsilon \downarrow 0 \ 1/n^2 \) is the eigenvalues of transversal energy in two-dimensional problem (see [4] p. 19) (by the way, \(\varepsilon \downarrow 0 \sim \gamma = E/mc^2 \) for the axial channeling electron).

Thus, for the electron recombination cross-section in two-dimensional potential with the photon emission and an electron transition into the state with the main quantum number \(n \) we get:

\[
\sigma_{\text{recom}} = \left|\frac{d\sigma_{\text{Br}}}{dn}\right| = \frac{8\pi \alpha (Z \alpha)^{1/2}}{3\sqrt{3}} \frac{\varepsilon \downarrow 0}{mc^2} \frac{\varepsilon \downarrow \perp n}{} \frac{n^3}{\hbar^2} \omega.
\]

(this expression is called the Kramers formula [13])

Assuming that the energy of the bound electron can be expressed as \(\varepsilon \downarrow n = -\varepsilon \downarrow 0 \ 1/n^2 \), where

\[
\varepsilon \downarrow 0 = mc^2 Z^{1/2} \gamma^{1/2} \frac{R_{TF}^2}{2h^2 d_{\perp}^2}\gamma [4],
\]

we may rewrite \(d\omega = -\varepsilon \downarrow 0 dn/\hbar n^3 \), and the electron recombination cross-section is

\[
\sigma_{\text{recom}} = \left|\frac{d\sigma_{\text{Br}}}{dn}\right| = \frac{8\pi \alpha (Z \alpha)^{1/2}}{3\sqrt{3}} \frac{\varepsilon \downarrow 0}{mc^2} \frac{n^3}{\hbar^2} \omega(\hbar \omega n^2 - \varepsilon \downarrow 0).
\]
5. The cross-section of electron recombination in two-dimensional potential with a photon emission and electron transition into any bound state;

The photorecombination cross-section of electrons in two-dimensional potential with the photon emission and electron transition in any bound state we can get if in the last formula to sum over all the main quantum numbers \(n \) \((1 \leq n < n_{\text{max}})\) \((\sum_{1 \leq n \leq n_{\text{max}}} \frac{\partial \sigma_{\text{ recom}}}{\partial \omega} \rightarrow \int_{1 \leq n \leq n_{\text{max}}} \frac{\partial \sigma_{\text{ recom}}}{\partial \omega})\).

Let's sum over all possible quantum numbers \(n \)

\[
\sigma_{\text{ recom}} = \sum_{n=1}^{n_{\text{max}}} \frac{\partial \sigma_{\text{ recom}}}{\partial n} = \sum_{n=1}^{n_{\text{max}}} \frac{8\pi a(Za) \times \sqrt[3]{3}}{mc \times \sqrt{\hbar^2 \omega n(\hbar \omega n^2 - \epsilon_0)}}
\]

where \(n_{\text{max}} = \sqrt{-m \lambda^2 Z^2 e^4 R TF^2 / 2 \hbar^2 d^2 U(d/r^2) - 1/2} \;(\lambda \text{ is the fitting parameter that is selected so that the atomic chain potential was close to the Lindhard potential; } Z \text{ is the atomic number of a single crystal})\).
5. The cross-section of electron recombination in two-dimensional potential with a photon emission and electron transition into any bound state;

The radiation spectra of relativistic electrons in tungsten
Write the statistical weights of the states under consideration:

\[g_{\text{recom}} = g_{XY} 2 \frac{4\pi k^2 \, dk}{(2\pi)^3} ; \quad g_{\text{ph}} = g_X g_Y 4\pi q^2 \, dq/(2\pi)^3 , \]

where \(g_X, g_Y, g_{XY} \) are statistical weights which correspond to the internal motion of these particles: \(X \) is a quasi-free (the initial state) particle, \(Y \) is the crystallographic axis potential, \(XY \) is a channeling (a bound particle in the axial mode channeling) particle, \(k \) is the photon wave vector, \(q \) is the wave vector of the particles relative motion.

Suppose that the photon flux in the volume \(V \) (if we have one photon) is \(j_{\text{ph}} = c/V \), and the particles flux (in the presence of a single particle in the volume \(V \)) equals \(j_p = v/V \), where \(v = \hbar q/\mu \) is the relative velocity, and \(\mu \) is the reduced particles mass. By using expression \(k = \omega/c \) for photons and the conservation law for energy: \(\hbar \omega = \varepsilon_{\perp n} + \hbar q^2 /2\mu \), where \(\varepsilon_{\perp n} \) is the bound energy of the particles in the axial channeling mode, \(\mu \) is the reduced particles mass, we find the connection between the recombination cross-section and the photoelectric effect cross-section:

\[\sigma_{\text{recom}} = 2 \frac{k^2 /q^2}{g_{XY} /g_X g_Y} \sigma_{\text{ph}} . \]
The last expression refers to the total cross-sections. An analogous expression can be obtained for differential cross-sections:

\[
d\sigma_{\text{recom}}/d\Omega_{\downarrow k} = k^2/q^2 \quad g_{\downarrow XY}/g_{\downarrow X} \quad g_{\downarrow Y} \quad d\sigma_{\text{ph}}/d\Omega_{\downarrow q}.
\]

The connection for the differential cross-sections refers to processes in which the photon is emitted (or absorbed) with the specific polarization; so in the last expression there is no multiplier "2". Since we do not consider the spin states of the channeling particles and the spin state of a crystalline lattice, we can put statistical weights of the channeling electron and a crystalline lattice equal to unit: \(g_{\downarrow X} = g_{\downarrow Y} = 1\). The statistical weight of the bound channeling state \(g_{\downarrow XY}\) is determined by the degeneration degree of the bound state of the transversal motion of the channeling particles with energy \(\epsilon_{\downarrow \perp n}\), i.e. \((n^2)\).
7. The photorecombination cross-section in the ultra-relativistic case;

We use the connection of the photorecombination cross-section with the photoelectric effect cross-section:

$$\sigma_{\text{recom}} = 2 \frac{k^2}{q^2} g_{XY} \sigma_{\text{ph}},$$

where σ_{ph} is the photoelectric effect cross-section, which in the ultra-relativistic case [6-10] can be written as [10]:

$$\sigma_{\text{ph}} = \frac{3}{4} U_0 \beta \left(\frac{mc^2}{\hbar \omega} \right) 8\pi e^4 \frac{1}{3m^2 c^4},$$

where U_0 is the fitting parameter in the continuous potential of the crystallographic chain ($U_0 \sim Ze^2$) [4].
The expression $W(\Omega) \, d\Omega = e^{\uparrow 2} \hbar \frac{\omega}{2\pi m \uparrow 2} \, c^{\uparrow 3} \, | \, D_{\downarrow n}^{\uparrow}, n \uparrow k, e \, | ^{\uparrow 2} \, d\Omega$

represents the probability that a channeling particle transfers from state n to state $n^{\uparrow'}$ and emits photon per unit solid angle $d\Omega$ with the frequency ω is equal to $\omega_{\downarrow n,n^{\uparrow'}}$ and polarization e. The calculation of the matrix element $D_{\downarrow n}^{\uparrow}, n \uparrow k, e$ requires to use the eigenfunctions of the channeling particles $u_{\downarrow n}$ and $u_{\downarrow n^{\uparrow'}}$ in the field of the continuous potential of the crystallographic axis, causing photon emission.

In the relativistic case, the Dirac relativistic spinor wave functions should be used for the eigenfunctions $u_{\downarrow n}$ and $u_{\downarrow n^{\uparrow'}}$, and momentum operator p should be replaced by the operator $mc\alpha$, i.e. $D_{\downarrow n}^{\uparrow}, n \uparrow k, e = imc/\hbar \int^{\uparrow \uparrow} u_{\downarrow n}^{\uparrow} \, e^{\uparrow i k R} \, a \downarrow e \, u_{\downarrow n} \, d\tau$.
9. References

The 8-th International Conference
CHANNELING 2018

Thank You for Your Attention!

THE QUESTIONS ARE WELCOME!

kalash@mephi.ru