Delhi Light Source (DLS): A Compact FEL-THZ facility

Subhendu Ghosh

Inter University Accelerator Centre, New Delhi, India
(A National Accelerator Centre for providing ion beam based research opportunity)

Channeling2018 \& AGTaX, 23-28 Sept, 2018

Plan of Presentation

- Concept of DLS, how is it different from conventional FEL
- Major developments for different sub-systems
- Beam optics calculation
- Cavity fabrication and testing
- Laser design and development
- Photocathode deposition system - design, fabrication, testing
- Undulator - design
- Deliverables
- Time chart
- Conclusion

INTRODUCTION TO DELHI LIGHT SOURCE (DLS)

Layout of Delhi Light Source (DLS)

Class 10000 clean room to accommodate Phase-I of the facility

Class 10000 clean room to accommodate Phase-I of the facility

Conventional FEL - Oscillator, Seeded \& SASE

Major points:

- Relativistic electron
- Approaching Undulator magnet, $?_{\mathrm{U}}$
- ? $?_{\mathrm{U}}$ - length contracted to $?_{\mathrm{U}}{ }^{*}=?_{\mathrm{U}} /$? ? ? $?=\mathrm{E} / \mathrm{E}_{0}$
- $?_{\mathrm{U}}{ }^{*}=$ Emitted wavelength from the electron
- Wavelength (lab fr.) $=?_{\mathrm{R}}=?_{\mathrm{U}}{ }^{*} / 2 ?=?_{\mathrm{U}} / 2 ?^{2}$, relativ Doppler effect
- Including the parameter of Undulator, wavelength measured will be

$$
\text { ? } R=\text { ? } U / 2 \text { ? } 2[1+K 2 / 2] \text { where } K=0.934 B u(T) \text { ? } U(\mathrm{~cm})
$$

Microbunching in FEL (Osc., Seeded and SASE)

Bunch length $\sim 3 \mathrm{~mm}$, E-energy $=7 \mathrm{MeV}$, ? t ? 10 ps onwards

Interaction of Photon and wiggling electron inside undulator magnet

- Now all the electron disks emit radiation in synchronism, \& the $?=$ wavelength of radiation light can amplify itself to form high-intensity laser radiation.

Conventional FEL

Prebunched FEL (Phase-I of DLS)

Super-radiant radiation from microbunch train

Super-radiant radiation

Superradiant radiation* - to produce frequencies when it is $\ll 1 / ?[1 / 30 \mathrm{fs}=33.3 \mathrm{THz}]$
If the time width of the electron beam bunch is $\sim 300 \mathrm{fs}$, then $1 / ?=3.3 \mathrm{THz}$
Delhi Light Source (DLS): Super-radiant with microbunch train

- e-bunches which is few hundred of fs (200 fs) - superradiant (I ? $\mathbf{N}_{1}{ }^{2}$)
- In addition, train of microbunches (separation $\boldsymbol{\sim} 500 \mathrm{fs}$ to a few ps) will be produced
- So I ? $\left(\mathrm{N}_{1}+\mathrm{N}_{2}+\ldots+\mathrm{N}_{16}\right)^{2}$

Major components of FEL - Pre-bunched FEL

1. An electron gun - laser operated PC \& a resonator powered by klystron/modulator
2. A laser system - produce the electron bunches - single pulse is split into many
3. Photocathode preparation device
4. Solenoid - focus electron beam - Cavity to Undulator
5. An Undulator magnet - to produce e.m. radiation
6. Beam diagnostic and e.m. radiation detector systems

$$
\lambda_{R}=\frac{\lambda_{U}}{2 \gamma^{2}}\left[1+\left[\frac{e B_{U} \lambda_{U}}{2 \pi m c}\right]^{2}\right]
$$

7. Electronics and Control system

$$
\gamma=E / E \downarrow o=8 / 0.5=16
$$

$?_{\mathrm{U}}$ - Undulator wavelength $\mathrm{B}_{\mathrm{U}}-$ Undulator mag field

Laser system of DLS

Development of Phase-I

Physics Design

- Wavelength range
- Energy
- Optics and Radiation
- $\mathrm{f}=0.18$ to 3 THz
- Energy $\sim 8 \mathrm{MeV}$
- Optics, Radn. simulation

Choice of Accel.

Components

- RF cavity, Frequency
- Photocathodes
- Laser
- Klystron, Modulator
- Solnd, Undulator, etc.

Electronics and Control

Time synchro syst

- LLRF
- For Diagnostics \& Meas. System
- Control system

RF cavity - 2860 MHz , Ready, Collab. with KEK Photocathodes - Design - IUAC, Fabrication - BNL
Laser - Finalized design., Osc+PA+Amp (1st stage) done: IUAC + KEK (AA + JW + Waseda Univ. + others)
Klystron, Modulator - Order placed - Scandinova, delivery '18 Autumn Solnd, Undulator, etc. - Delivered, Available - Summer 2019

- Preliminary design
- Collaboration w BARC
- Components being procured

Scheme of production of Electron Beam Micro-bunches

Production of electron beam microbunches -multi-micro bunch train

So total no. of laser micropulses and e-bunches 15 ? 16 ? $6.25=1500$ pulses $/ \mathrm{sec}$

Beam optics calculation

1. Photocathode, Laser
2. Cavity
3. Solenoid
4. Quadrupole - singlet
5. Undulator

Parameters at cathode:

- Laser spot size
- Bunch emission time
- Charge/e-bunch
- Initial transverse

Parameters at rf gun and solenoid:

- Laser injection phase (RF phase what electron sees at the photocathode)
- Max possible E field of gun
- Optimize B field of Solenoid emittance

Results (important parameters):

- Transverse emittance
- Spot size
- Bunch time spread
- Energy
- Energy spread

Radiation frequency range (THz)	0.18	3
Accelerating field (MV/m)	59	112
Launching phase (deg)	41	30
Electron Energy (MeV)	4.0	8.2
Energy spread (\%)	1.1	0.68
e-beam FWHM@ cathode (fs)	200	200
Total charge (pC)/microbunch	15	15
Number of microbunches	2	16
Av. microbunch separation at undulator's entrance (ps)	6.6	0.345
Peak Current (A) at und. entrance	20	75
$\boldsymbol{\sigma} \downarrow \boldsymbol{x}, \boldsymbol{y}(\mathrm{mm})$ at undulator's entrance	$\begin{aligned} & 1.75 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.7, \\ & 0.35 \end{aligned}$
Normalised emittance (\mathbf{x}, y) ? mm-mrad at undulator's entrance	$\begin{aligned} & 3.0, \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.8 \end{aligned}$

RADIATION FROM ACCELERATED CHARGES

COMPUTATION OF RADIATION BY LIENARD-WIECHERT POTENTIAL

Create/Load Particle Phase Space (t,x,y,z,px,py,pz) from GPT, ASTRA

Use Vay's Particle Pusher algorithm to evolve beam distribution (particle moves thru Undulator)

At a separation of $\sim m m ; R, p, 3-$ dot and t of all the electrons are computed

Trajectories integrated to $\mathrm{t}+\mathrm{dt}$ \& stored in particle's memory

Lorentz invariant particle pusher

Replace Boris velocity pusher

- Velocity push: $\quad u^{n+1}=u^{n}+\frac{q \Delta t}{m}\left(E^{n+1 / 2}+\frac{u^{n+1}+u^{n}}{2 \gamma^{n+1 / 2}} \times B^{n+1 / 2}\right) \quad u=\gamma v$
with
- Velocity push: $\quad u^{n+1}=u^{n}+\frac{q \Delta t}{m}\left(E^{n+1 / 2}+\frac{v^{n+1}+v^{n}}{2} \times B^{n+1 / 2}\right)$

Looks implicit but solvable analytically

$$
\left\{\begin{array}{l}
\gamma^{\prime+1}=\sqrt{\frac{\sigma+\sqrt{\sigma^{2}+4\left(\tau^{2}+u^{* 2}\right)}}{2}} \\
\mathbf{u}^{i+1}=\left[\mathbf{u}^{\prime}+\left(\mathbf{u}^{\prime} \cdot \mathbf{t}\right) \mathbf{t}+\mathbf{u}^{\prime} \times \mathbf{t}\right] /\left(1+r^{\prime}\right)
\end{array}\right.
$$

$$
\text { with }\left\{\begin{aligned}
& \mathbf{u}^{\prime}=\mathbf{u}^{\prime}+\frac{q \Delta t}{m}\left(\mathbf{E}^{i+1 / 2}+\frac{v^{\prime}}{2} \times \mathbf{B}^{i+1 / 2}\right) \\
& \tau=(q \Delta t / 2 m) \mathbf{B}^{i+1 / 2} \\
& u^{*}=\mathbf{u}^{\prime} \cdot \boldsymbol{\tau} / c \\
& \sigma=\gamma^{\prime 2}-\tau^{2} \\
& \gamma^{\prime}=\sqrt{1+u^{\prime 2} / c^{2}} \\
& \mathbf{t}=\boldsymbol{\tau} / \gamma^{i+1}
\end{aligned}\right.
$$

These data are retarded Positions, Velo. Acceleration \& time

Compute e.m. radiation by Lienard Wiechert Fields

*J L Vay, Physics of Plasmas 15, 056701 (2008)
"'Boris, J.P. (November 1970). "Relativistic plasma simulation-optimization of a hybrid code". Proceedings of the 4th Conference on Numerical Simulation of Plasmas. Naval Res. Lab.,

Transverse profile of Radiation $-\mathbf{3} \mathbf{~ T H z}$

Radiation simulation

Time width	Number of electrons	Total electron current	Energy content of 3 THz (囵)	Remarks
$\sim 200 \mathrm{fs}$	9.3 ? 10^{7}	75 A	$<\sim 1$	Single e-bunch.
$\sim 6 \mathrm{ps}$	1.5 ? 10^{9}	40 A	~ 12	Train of 16 e-bunches.
~ 3 ? s	2.25 ? 10^{10}	1.2 mA	~ 180	Train of 15 no. of $16 \mathrm{e}-$ bunches.
1 sec.	1.4 ? 10^{12}	22.5 nA	~ 1125	Train of 15 no. of $16 \mathrm{e}-$ bunches arriving 6.25 times in a sec.

Transportation \& Attenuation of THz through beam pipe

Material	Attenuation Constant (Np/m)	
	$\mathbf{0 . 1 8 ~ T H z}$	$\mathbf{3 ~ T H z}$
Al	0.1185	0.1618

Waveguide	Loss @ 0.18 THz	Loss @ 3 THz
Al	0.17 dB	0.51 dB

$$
\begin{aligned}
& P \downarrow k=\{\square(k \uparrow 2) . P \downarrow 1,1 \leq k \leq N \downarrow b \\
& (N \downarrow b \uparrow 2) \cdot P \downarrow 1, N \downarrow b+1 \leq k \leq N \downarrow u
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{loss}(d B)=10 \log \downarrow 10(P \downarrow u \\
& / \Sigma k=1 \uparrow N \downarrow u * *(B \downarrow k)
\end{aligned}
$$

Phase-I of the project: complete layout with expt. stations

Electron Gun at IUAC

Layout of HP-RF System

- Toshiba Klystron E37334 \& Solenoid magnet
- Scandinova K300 Modulator
- Solenoid Power Supply \& Ion Pump Power Supplies
- RF Drive amplifier
- Cooling of Klystron (Collector, Body, window), Solenoid
- Diagnostics and interlocks
- WR284 RF waveguide system (circulator, Loads, Directional couplers)

Factory Acceptance Results

(Important Klystron \& Modulator Parameters)

Main Parameters

RF Peak Power	25 MW	$\sim 25 \mathrm{MW}$
RF Average Power	5 kW	$\sim 5 \mathrm{~kW}$
RF Pulse width	$\leq 4 \mu \mathrm{~s}$	$\leq 4 \mu \mathrm{~s}$
Cathode Voltage	$>245 \mathrm{kV}$	$\sim 251 \mathrm{kV}$
Cathode Current	255 A	$\sim 255 \mathrm{~A}$
Pulse Flatness	$\leq \pm 0.3 \%$	$\pm 0.29 \%$
Pulse-to-Pulse Stability	$\leq 50 \mathrm{ppm}$	$\sim 42 \mathrm{ppm}$
Pulse Repetition Rate	$\leq 50 \mathrm{~Hz}$	$\leq 50 \mathrm{~Hz}$
Rate of Rise	$200-250 \mathrm{~V} / \mu \mathrm{s}$	$\sim 311 \mathrm{~V} / \mu \mathrm{s}$
Rate of Fall	$200-250 \mathrm{~V} / \mu \mathrm{s}$	$\sim 243 \mathrm{~V} / \mu \mathrm{s}$

Klystron \& Modulator Diagnostics

			\triangle		
C1	0201	C2	APO1		
	5.00 Vdiv		1.20 V /div		$20.0 \mathrm{mV/dix}$
	$-15.000 \mathrm{~V}$		3.8200 V		71.80
			51.914 kF		
			-7.38 V	--.	12.
	25.60 V		-1.28V		114.2
Δy	25.45 V		6.1		101.8

Klystron based high power RF source

Block diagram of the fiber laser system

Testing and installation of

Prototype Fiber oscillator + pre Amplifier

Schematic of Fiber Oscillator

Oscillator + Pre amplifier

- Power Stability: Without feedback
- Oscillator Frequency : Master clock
- Optical Bandwidth : Pulse width
- RF bandwidth : Locking

The latest design of the fiber laser

Oscillator

Photo diode signal

Central frequency 130 MHz

Oscillator Characteristics

Oscillator characteristic

Pulse picker timing

In order to make better precision We need higher spec function generator

Oscillator + Pre amplifier

Pre amplifier cooling block
Output Charactersistic of the PCF fiber pre amplifier with RMS spread

Oscillator (yellow) and pre amp (pink) photo diode signal

Main amplifier assembly

Main Amplifier CW testing

Seeding with Pre amplifier output

Cooling arrangements of diode

Pumping the main amplifier

Output Charactersistic of the Burst Amplifier 1

Photocathode deposition and transportation system

Base Vacuum ? 5 ? $10^{-11} \mathrm{mbar}$

Initial PC plug loading and cleaning chamber

PC Deposition chamber

PC Deposition chamber

Photocathode deposition and transportation system

Photocathode deposition and transportation system

Insertion chamber in to the RF gun

Insertion chamber in to the RF gun

Photocathode system.

- Vacuum testing of final PC insertion chamber.

Evacuation and baking

Ion pump evacuation

Ion pump Baking along with chamber

Ultimate vacuum: 1.7 X $10^{-10} \mathrm{mbar}$ (Ext. Gauge)
$5.9 \times 10^{-11} \mathrm{mbar}$ (Ion Contrlr)

Strip-line or Button BPM

Stripline BPM

Button BPM

Position measurement

Bunch Charge for interlocking

Stripline BPM

- Position of each microbunch of a 16 bunch train can't be resolved
- Position of macro-bunches (5 MHz) containing $2,4,8$ or 16 microbunch train can be resolved

Parameters for BPM, FC \& LLRF are finalized, Tender floated

Schematic of the Beam position measurement layout.

Beam transport device - Solenoid (NC)

Parameters	Values
Maximum magnetic Field at the Centre of the solenoid magnet	0.35 T
Physical Length including return yoke	$\leq 240 \mathrm{~mm}$
Overall Diameter	$\leq 480 \mathrm{~mm}$
Effective Length	$\sim 200 \mathrm{~mm}$
Bore Diameter	76 mm , fit over 2.75" flange
Alignment marks	Yes
Longitudinal alignment Tolerance	$\leq 0.25 \mathrm{~mm}$
Transverse alignment Tolerance	$\leq 0.025 \mathrm{~mm}$
Axial Field at a distance of 200 mm from the centre of the solenoid magnet	< 30 Gauss
Cooling Water requiremnt	$\sim 5 \mathrm{l} / \mathrm{min}$
Operating temperature of solenoid magnet	$\sim 20{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$
Water Pressure required in Cu Coils	~ 5 bar
Field Homogeneity	$\sim 5 \times 10^{-3}$ within $\pm 20 \mathrm{~mm}$ around the middle of the solenoid along the transverse and longitudinal direction

Transverse Optics, Quadrupole and Dipoles

Field (G)	4 MeV	8 MeV
D1	497	944
Q1	131	185
Q2	121	171
Q3	171	241
D2	497	944
Q4	148	210
Q5	190	269
Q6	148	210

Design of undulator magnet by RADIA

Hybrid Undulator - NdFeB - magnet, Vanadium Permendur - pole

Period length $\left(\lambda_{u}\right)=50 \mathrm{~mm}$
Device length $=\sim \mathbf{1 . 5 m}$

NdFeB Magnet size
Width $=19.00 \mathrm{~mm}$
Height $=55.00 \mathrm{~mm}$
Length $=80.00 \mathrm{~mm}$

Vanadium permendur pole size
Width $=6.00 \mathrm{~mm}$
Height $=45.00 \mathrm{~mm}$
Length $=60.00 \mathrm{~mm}$

$\boldsymbol{B}_{\mathrm{R}}$						
$(\sim \mathrm{mm})$	Freq. to be Produced (THz)	Electron Energy (MeV)	\mathbf{Q}_{U} (mm)	$\mathrm{K}-$ value	\mathbf{B}_{u} (T)	Required gap (mm)
1.67	0.16	4.1	50	2.89	0.62	20
0.1	3	8.2	50	0.6	0.1	45

Opportunity - to utilise an

Unused Undulator magnet of Bessy with the help of DESY (Dr. Markus Tischer)

Comparison between designed Undulator for DLS and Undulator of Bessy

	Designed Undulator for DLS	Bessy's Undulator
Technology	Hybrid planar	Planar
Magnet	NdFeB magnet $\left(\mathrm{B}_{\mathrm{r}}=1.21 \mathrm{~T}\right)$	NdFeB magnet
Pole	Vanadium permendur	Not Applicable
Period length	50 mm	48 mm
No of Periods	$28($ Full $)$	41
Device length	$\sim 1.5 \mathrm{~m}$	$\sim 2 \mathrm{~m}$
Magnetic gap	$20-45(\mathrm{~mm})$	$17-42(\mathrm{~mm})$
Magnetic field	$0.62-0.11(\mathrm{~T})$	$0.62-0.11(\mathrm{~T})$
Undulator parameter (\mathbf{K})	$2.89-0.61$	$2.73-0.52$
Wavelength	$0.18-3.0(\mathrm{THz})$	$0.18-3.0(\mathrm{THz})$
gap reproducibility	0.01 mm	Should be similar
Beam Line Height	1.1 m	0.5 m

$$
\begin{aligned}
& \lambda_{R}=\frac{\lambda_{u}}{2 \gamma^{2}}\left[1+\frac{K^{2}}{2}\right] \\
& \mathrm{K}=0.934 \text { 囵 } \mathrm{B}_{\mathrm{u}}(\mathrm{~T}) \text { ? ? }{ }_{\mathrm{u}}(\mathrm{~cm})
\end{aligned}
$$

A few pictures of Bessy's Undulator

Expected Deliverables from Delhi Light Source

THz Frequency range : 0.18 to $3 \mathbf{T H z}$
$0.18 \mathrm{THz}\left(1.7 \mathrm{~mm}, 6 \mathrm{~cm}^{-1}, 0.7 \mathrm{meV}\right)$ to
$3.0 \mathrm{THz}\left(100\right.$? $\mathrm{m}, 100 \mathrm{~cm}^{-1}, 12$ meV)

Time width	No. of electrons	Total electron current	Energy content of 3 THz (回J)	Electric field of 3 THz	Remarks
~ 200 fs	9.3 ? 10^{7}	75 A	$<\sim 1$		Single e-bunch.
$\sim 6 \mathrm{ps}$	1.5 ? 10^{9}	40 A	~ 12		Train of 16 ebunches.
~ 3 回	$\begin{aligned} & 2.25 \\ & 10^{10} \end{aligned}$	1.2 mA	~ 180		Train of 15 no. of 16 e-bunches.
1 sec .	1.4 ? 10^{12}	22.5 nA	~ 1125	$\begin{aligned} & \text { ? } 100 \mathrm{kV} / \\ & \mathrm{cm} \end{aligned}$	Train of 15 no. of 16 e-bunches arriving 6.25 times in a sec.

Time chart - for Phase I of DLS

RF cavity - electron gun and copper PC is made ready, under vac. at IUAC
Design finalization of Klystron/Mod, order placement
\square Assembly, testing \& FAT of Klys./Mod. Scandinova, Sweeden

Installation of High Power RF system at IUAC \square
Design, Dev., testing of fibre laser \& \square Installation at IUAC

Beam Line Design \& \square Proc. of BPM, FC, LLRF
Transv. B.O. \& Magnets - Design \& Proc. \square
Power Supply - Quadrupole and Steering

\square
Procurement / development of Undulator magnet \square
Demonstration - electron beam
\square
Demonstration - THz radiation

Conclusion

- IUAC - A national level Accelerator User Facility - providing Ion beam 24×7.
- IUAC - wants to increase user base by providing photon beam
- Delhi Light Source - A pre-bunched Free Electron Laser
- Photocathode RF electron gun will produce good quality of e-beam ($\sim 4-8 \mathrm{MeV}$)
- Electron beam to be injected in to a compact undulator to produce $\mathrm{THz}(3.0$ to 0.18$)$
- Electron beam is to produced by the middle of 2019
- THz will be demonstrated by the end of 2019
- THz radiation \& Electron beam to be used for experiments in multidisciplinary Sc. in fundamental and applied areas.

Laser Device

Splitting a single laser pulse in to many and change their separation

Channeling2018 \& AGTaX, 23-28 Sept,

A single laser pulse is split in to four laser pulses with variable separation

Available laser power vs. Beam optics requirement

System	Energy/ pulse (UV)	Cathode	No of Microbunch es	Available charge/ pulse	Equipments to be supplied	Tentative Price
Fiber Laser assembled @ KEK	25uJ	Cu $\mathrm{Cs}_{2} \mathrm{Te}$	$2,4,8 \& 16$ $2,4,8 \& 16$	$23,10,3.7,2 \mathrm{pC}$ 11, 5, 2.5, 1.2 nC	Osc. + Amp. + Freq. Conv. + Synch. System + splitting To be tested in KEK system	\$ 200,000

Phase-I of the project: complete layout with expt. stations

Phase-I: RT e-gun

Details of Photocathode

Photocathode:

- Metal Photocathode e.g. Copper, Magnesium, Lead
- Semiconductor photocathode e.g. $\mathrm{Cs}_{2} \mathrm{Te}, \mathrm{K}_{2} \mathrm{CsSb}, \mathrm{GaAs}$

Cathode	Quantum Efficiency (\%)	Photon Energy (eV)	Photon wavele ngth (nm)	Advantage	Disadvan tage	Laser Energy for 1 nC/pulse (~ $10^{9} \mathrm{e} /$ pulse)
Copper	0.014	4.96 eV	250	Rugged, Long life, Less vac	Less QE, High Laser energy	35.4 ? J
Magnesium	0.62	4.66 eV	266			9.2 ?
Lead	0.016	5.8 eV	214			2.2 ?
$\mathrm{Cs}_{2} \mathrm{Te}$	~ 10	4.66 eV	266	High QE, Less laser Energy	Delicate, Shorter life, UHV	51 nJ
$\mathrm{K}_{2} \mathrm{CsSb}$	~ 10	2.33 eV	533			23.3 nJ
GaAs:Cs	~ 10	2.33 eV	533			23.3 nJ
GaN:Cs Thin layer of Cesium is deposited on GaN	~ 15	4.77 eV	260	V. High QE robust (thk $\sim 100-1000 \mathrm{~nm}$), QE is 50% back after 200C vac bakeout	New PC, not much data av.	37 nJ

- Thickness of CsTe $\sim 100 \mathrm{~nm}$, surface roughness $\leq 10-20 \mathrm{~nm}$

Bunching factor of a Single micro-bunch

$$
f(\omega)->0
$$

C. J. Hirschmugl, M. Sagurton, and G. P. Williams, "Multiparticle coherence calculations for synchrotron-radiation emission," Phys. Rev. A, vol. 44, no. 2, pp. 1316-1320, 1991.

Total Radiation Field is given by the sum of plane waves emitted by individual electrons:
$\mathrm{E}=E \downarrow 0 \quad \sum j=0 \uparrow N$ 葉 $\exp \operatorname{exi} \omega \boldsymbol{n} . \boldsymbol{r} \downarrow \boldsymbol{j} / c$
Amplitude of the field is given by:
 $\sum k=0 \uparrow N$ 葉 $\exp \uparrow-i \omega \boldsymbol{n} . \boldsymbol{r} \downarrow \boldsymbol{k} / c$
The above equation in a more detailed fashion was solved in Hirschmugl's famous paper and the solution is given below:

$$
|E|=\sqrt{ } N+N(N-1) f(\omega) E \downarrow 0(\omega)
$$

where $f(\omega)$ is called the bunching factor of the bunch corresponding to frequency ω and is given by
$f(\omega)=1 / N(N-1) \sum j, k=1(j \neq k) \uparrow N W \operatorname{win} \exp i \omega \boldsymbol{n}$. $(\boldsymbol{r} \downarrow \boldsymbol{j}-$ $r \downarrow \boldsymbol{k}) / c$

It is clear from above equation that the amplitude of radiation will be maximum along undulator's axis if $f(\omega) \rightarrow 1$. This condition is possible only if the bunch length ($l \downarrow b \sim z \downarrow$ first - Zlast) is extremely small as compared to the wavelength of the radiation i.e.
$\omega(z \downarrow$ first $-z$ last $) / c \approx 2 \pi(z \downarrow$ first $-z \downarrow$ last $) / \lambda c \rightarrow 0$
Such a bunch is called a "Super-radiant bunch"

The bunching factor of the comb beam is given:

$\boldsymbol{n} \cdot \boldsymbol{r} \downarrow \boldsymbol{j}, \boldsymbol{m} / c+i \omega \boldsymbol{n} . \Delta \boldsymbol{r} \downarrow \boldsymbol{m} / c)) / N \downarrow m N \downarrow e$
$f(\omega) \rightarrow 1$ only if
$\boldsymbol{n} \cdot \boldsymbol{r} \downarrow \boldsymbol{j}, \boldsymbol{m} / c \ll \lambda$ \& $\boldsymbol{n} \cdot \Delta \boldsymbol{r} \downarrow \boldsymbol{m} / c \approx \lambda$
$\boldsymbol{n} \cdot \boldsymbol{r} \downarrow \boldsymbol{J}, \boldsymbol{m}=$ position of $j^{\text {th }}$ particle of $\mathrm{m}^{\text {th }}$ microbunch from the centre of mass of that microbunch
$\boldsymbol{n} \cdot \Delta \boldsymbol{r} \boldsymbol{\downarrow} \boldsymbol{m}=$ longitudinal separation between microbunches
$\boldsymbol{n} \cdot \boldsymbol{\Delta} \boldsymbol{\mathcal { L }} \boldsymbol{\boldsymbol { C }}=\mathrm{z}$ component of centre of mass of the micro bunch

