Delhi Light Source (DLS): A Compact FEL-THZ facility

Subhendu Ghosh

Inter University Accelerator Centre, New Delhi, India (A National Accelerator Centre for providing ion beam based research opportunity)

Channeling2018 & AGTaX, 23-28 Sept, 2018

Plan of Presentation

- Concept of DLS, how is it different from conventional FEL
- Major developments for different sub-systems
 - Beam optics calculation
 - Cavity fabrication and testing
 - Laser design and development
 - Photocathode deposition system design, fabrication, testing
 - Undulator design
- Deliverables
- Time chart
- Conclusion

INTRODUCTION TO DELHI LIGHT SOURCE (DLS) Layout of Delhi Light Source (DLS)

Class 10000 clean room to accommodate Phase-I of the facility

<u>Class 10000 clean room to accommodate Phase-I of the facility</u>

Conventional FEL – Oscillator, Seeded & SASE

Major points:

- Relativistic electron
- Approaching Undulator magnet, \bigcirc_{U}
- $\mathbf{?}_{U}$ length contracted to $\mathbf{?}_{U}^{*} = \mathbf{?}_{U}/\mathbf{?}, \mathbf{?} = E/E_{0}$
- $\mathbf{?}_{U}^{*}$ = Emitted wavelength from the electron
- Wavelength (lab fr.) = $\mathbf{R} = \mathbf{R} \frac{\mathbf{R}}{U} / 2\mathbf{R} = \mathbf{R} \frac{\mathbf{R}}{U} / 2\mathbf{R}^2$, relative Doppler effect
- Including the parameter of Undulator, wavelength measured will be

 $R = U/2?2 [1+K^2/2]$ where K = 0.934Bu(T)?U(cm)

Pre-bunched FEL - How is it different from conventional FEL

2

UAC

Super-radiant radiation from microbunch train

Super-radiant radiation

Superradiant radiation^{*} – to produce frequencies when it is << 1/? [1/30 fs = 33.3 THz] If the time width of the electron beam bunch is ~ 300 fs, then 1/? = 3.3 THz

Delhi Light Source (DLS): Super-radiant with microbunch train

- e-bunches which is few hundred of fs (200 fs) superradiant (I $? N_1^2$)
- In addition, train of microbunches (separation ~ 500 fs to a few ps) will be produced
- So I ? $(N_1 + N_2 + ... + N_{16})^2$

* B.Green et. al. www.nature.com/scientificreports(6:22256,DOI:10.1038)

Major components of FEL – Pre-bunched FEL

- 1. An electron gun laser operated PC & a resonator powered by klystron/modulator
- 2. A laser system produce the electron bunches single pulse is split into many
- 3. Photocathode preparation device
- 4. Solenoid focus electron beam Cavity to Undulator
- 5. An Undulator magnet to produce e.m. radiation
- 6. Beam diagnostic and e.m. radiation detector systems
- 7. Electronics and Control system

$$\lambda_{R} = \frac{\lambda_{U}}{2\gamma^{2}} \left[1 + \left[\frac{eB_{U}\lambda_{U}}{2\pi mc} \right]^{2} \right]$$

 \mathbf{P}_{U} – Undulator wavelength B_U – Undulator mag field

Development of Phase-I

Scheme of production of Electron Beam Micro-bunches

Channeling2018 & AGTaX, 23-28 Sept, 2018

Production of electron beam microbunches multi-micro bunch train

So total no. of laser micropulses and e-bunches 15 ? 16 ? 6.25 = 1500 pulses/sec

UAC

Beam optics calculation

- 1. Photocathode, Laser
- 2. Cavity
- 3. Solenoid
- 4. Quadrupole singlet
- 4. Undulator

Parameters at cathode:

- Laser spot size
- Bunch emission time
- Charge/e-bunch
- Initial transverse emittance

Parameters at rf gun and solenoid:

- Laser injection phase (RF phase what electron sees at the photocathode)
- Max possible E field of gun
- Optimize B field of Solenoid

Results (important parameters):

- Transverse emittance
- Spot size
- Bunch time spread
- Energy
- Energy spread

Beam optics calculation of Phase-I (GPT)

RADIATION FROM ACCELERATED CHARGES

 $R = R_{obs} - R_e$, distance of the observation point from the source of radiation $n = \mathbf{R}/R$, unit vector pointing from source of radiation to the observation point

?, d ? / dt are the velocity and acceleration of the particle ? = 1- n??

COMPUTATION OF RADIATION BY LIENARD-WIECHERT POTENTIAL

Create/Load Particle Phase Space (t,x,y,z,px,py,pz) from GPT, ASTRA

Use Vay's Particle Pusher algorithm to evolve beam distribution (particle moves thru Undulator)

At a separation of ~mm; R, p, ?dot and t of all the electrons are computed

Trajectories integrated to t + dt & stored in particle's memory

These data are retarded Positions, Velo. Acceleration & time Lorentz invariant particle pusher

Compute e.m. radiation by Lienard Wiechert Fields $E(r, t) = q/4\pi \epsilon \downarrow 0 \quad (n) = q$

*J L Vay, Physics of Plasmas 15, 056701 (2008)

"Boris, J.P. (November 1970). "Relativistic plasma simulation-optimization of a hybrid code". Proceedings of the 4th Conference on Numerical Simulation of Plasmas. Naval Res. Lab.,

Transverse profile of Radiation – 3 THz

Radiation simulation

Time width	Number of	Total electron	Energy content	Remarks
	electrons	current	of 3 THz (?J)	
~ 200 fs	9.3 ? 10 ⁷	75 A	<~1	Single e-bunch.
~ 6 ps	1.5 ? 10 ⁹	40 A	~ 12	Train of 16 e-bunches.
~ 3 ? s	2.25 ? 10 ¹⁰	1.2 mA	~ 180	Train of 15 no. of 16 e- bunches.
1 sec.	1.4 ? 10 ¹²	22.5 nA	~ 1125	Train of 15 no. of 16 e- bunches arriving 6.25 times in a sec.

Transportation & Attenuation of THz through beam pipe

Phase-I of the project: complete layout with expt. stations

Channeling2018 & AGTaX, 23-28 Sept, 2018

Electron Gun at IUAC

Channeling2018 & AGTaX, 23-28 Sept, 2018

Layout of HP-RF System

- Toshiba Klystron E37334 & Solenoid magnet
- Scandinova K300 Modulator
- Solenoid Power Supply & Ion Pump Power Supplies
- RF Drive amplifier
- Cooling of Klystron (Collector, Body, window), Solenoid
- Diagnostics and interlocks
- WR284 RF waveguide system (circulator, Loads, Directional couplers)

Factory Acceptance Results (Important Klystron & Modulator Parameters)

Main Parameters	Tender Requirement	Factory Achieved Results
RF Peak Power	25 MW	$\sim 25 \text{ MW}$
RF Average Power	5 kW	$\sim 5 \text{ kW}$
RF Pulse width	\leq 4 μ s	$\leq 4 \ \mu s$
Cathode Voltage	>245 kV	$\sim 251 \text{ kV}$
Cathode Current	255 A	~ 255 A
Pulse Flatness	$\leq \pm 0.3\%$	$\pm 0.29\%$
Pulse-to-Pulse Stability	\leq 50 ppm	$\sim 42 \text{ ppm}$
Pulse Repetition Rate	\leq 50 Hz	\leq 50 Hz
Rate of Rise	200-250 V/µs	$\sim 311 \text{ V/}\mu\text{s}$
Rate of Fall	200-250 V/µs	$\sim 243 \ V/\mu s$

Klystron & Modulator Diagnostics

Klystron based high power RF source

Block diagram of the fiber laser system

Oscillator + Pre amplifier

- Dever Stability : Without feedback
- Oscillator Frequency : Master clock
- Optical Bandwidth : Pulse width
- □ RF bandwidth : Locking

The latest design of the fiber laser

Channeling2018 & AGTaX, 23-28 Sept, 2018

Oscillator

Photo diode signal

 Mesure
 P1:freq(1)
 P2:max(21)
 P3:mr(21)
 P4:- P5:-- P6:-

 value
 95:64 MHz
 747 mV
 53 mV
 S3 mV
 S3 mV

 C1
 C00
 C00
 C00 mVdati
 C00 mVdati
 C00 CSE
 C00 mVdati

 TELEDVE
 ECEPY
 C00 CSE
 C00 CSE
 C00 CSE
 C00 CSE

📋 File 🚦 Vertical ↔ Timebase | ↑ Trigger 📼 Display | 🖋 Cursors 🛛 Measure 🔛 Math | 🗠 Analysis 🕺 Utilities 🚯 Support

Pulse to pulse stability

Central frequency 130 MHz

Oscillator Characteristics

Pulse picker timing

Oscillator + Pre amplifier

Pre amplifier cooling block

Oscillator (yellow) and pre amp (pink) photo diode signal

Main amplifier assembly

Main Amplifier CW testing

Seeding with Pre amplifier output

Pumping the main amplifier

Cooling arrangements of diode

Output Charactersistic of the Burst Amplifier 1

Photocathode deposition and transportation system

Channeling2018 & AGTaX, 23-28 Sept, 2018

Base Vacuum ? 5 ? 10⁻¹¹ mbar

Loading and cleaning chamber

Base Vacuum ? 5 ? 10⁻¹¹ mbar

Initial PC plug loading and cleaning chamber

Initial PC plug loading and cleaning chamber

Photocathode deposition and transportation system

Channeling2018 & AGTaX, 23-28 Sept, 2018

PC Deposition chamber

PC Deposition chamber

PC Deposition chamber

Photocathode deposition and transportation system

Photocathode deposition and transportation system

Insertion chamber in to the RF gun

Insertion chamber in to the RF gun

Photocathode system.

• Vacuum testing of final PC insertion chamber.

Evacuation and baking

Ion pump evacuation

Ion pump Baking along with chamber

Ultimate vacuum: 1.7 X 10⁻¹⁰ mbar (Ext. Gauge) 5.9 X 10⁻¹¹ mbar (Ion Contrlr)

Strip-line or Button BPM

Stripline BPM

Button BPM

Stripline BPM

- Position of each microbunch of a 16 bunch train can't be resolved
- Position of macro-bunches (5 MHz) containing
 - 2, 4, 8 or 16 microbunch train can be resolved

Parameters for BPM, FC & LLRF are finalized, Tender floated

Schematic of the Beam position measurement layout.

Beam transport device – Solenoid (NC)

Parameters	Values
Maximum magnetic Field	0.35 T
at the Centre of the	
solenoid magnet	
Physical Length including	≤ 240 mm
return yoke	
Overall Diameter	≤ 480 mm
Effective Length	~ 200 mm
Bore Diameter	76 mm, fit over 2.75" flange
Alignment marks	Yes
Longitudinal alignment	≤ 0.25 mm
Tolerance	
Transverse alignment	≤ 0.025 mm
Tolerance	
Axial Field at a distance of	< 30 Gauss
200mm from the centre of	
the solenoid magnet	
Cooling Water requiremnt	~ 5 l/min
Operating temperature of	$\sim 20 \text{ °C} \pm 1 \text{ °C}$
solenoid magnet	
Water Pressure required in	~5 bar
Cu Coils	
Field Homogeneity	$\sim 5 \times 10^{-3}$ within ± 20 mm
	around the middle of the
	solenoid along the transverse
	and longitudinal direction

Transverse Optics, Quadrupole and Dipoles

Field (G)	4 MeV	8 MeV
D1	497	944
Q1	131	185
Q2	121	171
Q3	171	241
D2	497	944
Q4	148	210
Q5	190	269
Q6	148	210

Design of undulator magnet by RADIA

Hybrid Undulator - NdFeB - magnet, Vanadium Permendur - pole

	Pole	Magnet	Period length (λ_u) = 50mm Device length = ~ 1.5m					
		Nd Wi He Le	NdFeB Magnet size Width = 19.00mm Height = 55.00mm Length = 80.00mmVanadium permendur p Width = 6.00mm Height = 45.00mm Length = 60.00mm			tendur pole s n nm nm	ize	
	? _R (~mm)	Freq. to be Produced (THz)	Electron Energy (MeV)	? U (mm)	K – value	B _u (T)	Required gap (mm)	
	1.67	0.16	4.1	50	2.89	0.62	20	
P	0.1	3	8.2	50	0.6	0.1	45	
							58	

Channeling2018 & AGTaX, 23-28 Sept, 2018

Opportunity – to utilise an **Unused Undulator magnet of Bessy** with the help of DESY (Dr. Markus Tischer)

Channeling2018 & AGTaX, 23-28 Sept, 2018

Comparison between designed Undulator for DLS and Undulator of Bessy

	Designed Undulator for DLS	Bessy's Undulator
Technology	Hybrid planar	Planar
Magnet	NdFeB magnet ($B_r = 1.21T$)	NdFeB magnet
Pole	Vanadium permendur	Not Applicable
Period length	50 mm	48mm
No of Periods	28 (Full)	41
Device length	~1.5 m	~ 2 m
Magnetic gap	20 - 45 (mm)	17-42 (mm)
Magnetic field	0.62 - 0.11 (T)	0.62 - 0.11 (T)
Undulator parameter (K)	2.89 - 0.61	2.73 -0.52
Wavelength	0.18 - 3.0 (THz)	0.18 - 3.0 (THz)
gap reproducibility	0.01 mm	Should be similar
Beam Line Height	1.1 m	0.5 m

$$\lambda_{R} = \frac{\lambda_{u}}{2\gamma^{2}} \left[1 + \frac{K^{2}}{2} \right]$$

K = 0.934 ? $B_u(T)$??u(cm)

60

A few pictures of Bessy's Undulator

Expected Deliverables from Delhi Light Source

THz Frequency range : 0.18 to 3 THz

0.18 THz (1.7 mm, 6 cm⁻¹, 0.7 meV) to 3.0 THz (100 ?m, 100 cm⁻¹, 12 meV)

Time width	No. of electrons	Total electron current	Energy content of 3 THz (? J)	Electric field of 3 THz	Remarks
~ 200 fs	9.3 ? 10 ⁷	75 A	<~1		Single e-bunch.
~ 6 ps	1.5 ? 10 ⁹	40 A	~ 12		Train of 16 e- bunches.
~ 3 ? s	2.25 ? 10 ¹⁰	1.2 mA	~ 180		Train of 15 no. of 16 e-bunches.
1 sec.	1.4 ? 10 ¹²	22.5 nA	~ 1125	? 100 kV/ cm	Train of 15 no. of 16 e-bunches arriving 6.25 times in a sec.

Time chart – for Phase I of DLS

Conclusion

- IUAC A national level Accelerator User Facility providing Ion beam 24×7 .
- IUAC wants to increase user base by providing photon beam
- Delhi Light Source A pre-bunched Free Electron Laser
- Photocathode RF electron gun will produce good quality of e-beam ($\sim 4 8 \text{ MeV}$)
- Electron beam to be injected in to a compact undulator to produce THz (3.0 to 0.18)
- Electron beam is to produced by the middle of 2019
- THz will be demonstrated by the end of 2019
- THz radiation & Electron beam to be used for experiments in multidisciplinary Sc. in fundamental and applied areas.

Thanks for your patience

Channeling2018 & AGTaX, 23-28 Sept, 2018

65

R

Channeling2018 & AGTaX, 23-28 Sept, 2018 Laser Device

Splitting a single laser pulse in to many and change their separation

Channeling2018 & AGTaX, 23-28 Sept, 2018

A single laser pulse is split in to four laser pulses with variable separation

Courtesy: Dr. A. Aryshev

Available laser power vs. Beam optics requirement

	Laser S					
System	Energy/ pulse (UV)	Cathode	No of Microbunch es	Available charge/ pulse	Equipments to be supplied	Tentative Price
Fiber Laser assembled @KEK	25uJ C	Cu	2, 4, 8 & 16	23, 10, 3.7, 2 pC	Osc. + Amp. + Freq. Conv. + Synch. System + splitting To be tested in KEK system	\$ 200,000
		Cs ₂ Te	2, 4, 8 & 16	11, 5, 2.5, 1.2 nC		

Phase-I of the project: complete layout with expt. stations

Channeling2018 & AGTaX, 23-28 Sept, 2018

Phase-I: RT e-gun

Details of Photocathode

Photocathode:

- Metal Photocathode e.g. Copper, Magnesium, Lead ٠
- Semiconductor photocathode e.g. Cs₂Te, K₂CsSb, GaAs •

To be developed at IUAC

Cathode	Quantum Efficiency (%)	Photon Energy (eV)	Photon wavele ngth (nm)	Advantage	Disadvan tage	Laser Energy for 1 nC/pulse (~ 10 ⁹ e/pulse)
Copper	0.014	4.96 eV	250	Pugged	Less QE,	35.4 ? J
Magnesium	0.62	4.66 eV	266	Long life,	High Laser energy	9.2 ? J
Lead	0.016	5.8 eV	214	Less vac		2.2 ? J
Cs ₂ Te	~10	4.66 eV	266	High OF	Delicate, Shorter life, UHV	51 nJ
K ₂ CsSb	~10	2.33 eV	533	Less laser		23.3 nJ
GaAs:Cs	~10	2.33 eV	533	Energy		23.3 nJ
GaN:Cs Thin layer of Cesium is deposited on GaN	~15	4.77 eV	260	V. High QE robust (thk ~ 100-1000nm), QE is 50% back after 200C vac bakeout	New PC, not much data av.	37 nJ

Thickness of CsTe~ 100 nm, surface roughness \leq 10-20 nm ٠

Bunching factor of a Single micro-bunch

 $f(\omega) \rightarrow 1$

C. J. Hirschmugl, M. Sagurton, and G. P. Williams, "Multiparticle coherence calculations for synchrotron-radiation emission," *Phys. Rev. A*, vol. 44, no. 2, pp. 1316–1320, 1991.

Total Radiation Field is given by the sum of plane waves emitted by individual electrons:

Amplitude of the field is given by: $|E| = \sqrt{E1*} E = E \downarrow 0 \sqrt{\sum j} = 01N \exp(i\omega n \cdot r \downarrow j)/c$ $\sum k = 01N \exp(1-i\omega n \cdot r \downarrow k)/c$

The above equation in a more detailed fashion was solved in Hirschmugl's famous paper and the solution is given below:

$|E| = \sqrt{N} + N(N-1)f(\omega) E \downarrow 0 \ (\omega)$

where $f(\omega)$ is called the bunching factor of the bunch corresponding to frequency ω and is given by

 $\begin{aligned} f(\omega) = 1/N(N-1) \sum_{j,k} = 1(j \neq k) \uparrow N = exp \uparrow i\omega \mathbf{n}. (\mathbf{r} \downarrow \mathbf{j} - \mathbf{r} \downarrow \mathbf{k})/c \end{aligned}$

It is clear from above equation that the amplitude of radiation will be maximum along undulator's axis if $f(\omega) \rightarrow 1$. This condition is possible only if the bunch length ($llb \sim zlfirst - zlast$) is extremely small as compared to the wavelength of the radiation i.e.

 $\omega(z\downarrow first - zlast)/c \approx 2\pi(z\downarrow first - z\downarrow last)/\lambda c \rightarrow 0$

Such a bunch is called a "Super-radiant bunch"

R

r

У

S

rc

 $\Delta r/3$

 $\Delta r l 2$

 $\Delta r/1$

r1c

TC = position of centre of mass of a microbunch

rj,m = position of j^{th.} particle wrt to the m^{th.} particle of the microbunch

The bunching factor of the comb beam is given:

 $f(\omega) = \sum m = 0 \uparrow N \downarrow m - 1 \implies (\sum j = 1 \uparrow N \downarrow e \implies \exp(i\omega)$ $n \cdot r \downarrow j, m / c + i\omega n \cdot \Delta r \downarrow m / c)) / N \downarrow m N \downarrow e$ $f(\omega) \rightarrow 1 \text{ only if}$

n.**rj**,**m** = position of jth particle of mth microbunch from the centre of mass of that microbunch

 $n \cdot \Delta r \downarrow m$ = longitudinal separation between microbunches

 $n \cdot \Delta r \downarrow c$ = z component of centre of mass of the micro bunch