

The University of Manchester

Enhanced γ-ray emission by using counter-propagating laser beams irradiating solid target

YUAN ZHAO

Supervisor: Guoxing Xia

2018.9.23

Outline

► Background of γ -ray sources

- Applications
- γ -ray sources based on laser-plasma interaction
- Simulation results
- ► Summary

Applications : imaging

Denser matter⇒ higher energy and higher brightness

Ultrafast phenomenon \Rightarrow increasing resolution and shorter pulse duration

\blacktriangleright Conventional γ -ray sources

Radioactive sources, and Compton scattering source based on conventional accelerator.

lon cavity

• Novel γ -ray sources

Produced by laser-plasma interaction (LPI)

Hwang S W, Lee H J. Journal of the Optical Society of Korea. 2009, 13(1):86-91.

S. Corde, et, al., Reviews of Modern Physics, 85 (2013) 1-48.

In quantum electrodynamics regimes

nonlinear Compton scattering

 $a_0 \ll 1$ linear single photon absorbed $a_0 \gg 1$ nonlinear multiple photon absorbed

Delayed counter-propagating laser beams irradiating solid target

Code: EPOCH-QED open source code; **Simulation sources:** SCARF cluster.

2018/9/25

Four stages:

First laser irradiating, **rons zone** Second laser approaching the dense electrons zone, Second laser arrives at the rear surface, Second laser reflected.

Three kinds radiation regimes: Direct radiating; corresponding to the peak of photons emission Nonlinear Compton scattering[1]: $\omega'_{max} = \frac{\epsilon + p}{1 - \cos(\theta)}$ determines the maximum of the photons energy Radiation from oscillating electrons: $\omega = \omega_{e} / (1 - \beta) \simeq 2\gamma^{2} \omega_{e}$ [1]Mackenroth F, Di Piazza A. Physical Review A, 2011,83(3): Channel 3212618 6

Simulation results

After the first laser irradiating \rightarrow dense electrons zone forming

Second laser interacts with the dense electron zone

Direct radiation and reflected laser interacts with dense electron zone

► Spectra

► Discussion

Analyze the function of the first laser

Model	Electric field maximum	Peak photon density/n _c
DLB	4.126e14	129
SLR	5.171e14	160

SLR: Single Laser from Right side; DLB: Double Laser from Both sides

2018/9/25

▶ Discussion

Materials

2018/9/25

Channeling 2018

► Summary

- Proposed to use delayed counter-propagating laser beams to irradiate the solid. After the first laser irradiating, there will form a dense electron zone in the rear side of the target. The dense electron zone are larger than $2\lambda_0$ with averaged density of $\sim 30n_c$;
- The second laser interacts with the dense electron zone from the time when the laser arriving this area to the time when the reflected laser leave this area. This increases the duration of laser-electron interaction and thus enhances the photons emission.
- This delayed counter-propagating lasers model can enhance the brightness of γ -ray source significantly.

Thanks for your attention!