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LPWA — laser plasma wakefield acceleration is discussed
as one of possible ways to solve the problem of the energy gain
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A “Livingston plot” showing the evolution V4
of lerator laboratory energy from 1930 7
until 2005. Energy of colliders is plotted in 7
terms of the laboratory energy of particles
colliding with a proton at rest to reach the
same center of mass energy.
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The basic IDEA
of acceleration 1n plasma
channel

Y.B. Feinberg
/I Sov. Atomic Energy, vol. 6,
1959, p.1084.
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An intense electromagnetic pulse can create a weak of plasma oscillations through the
action of the nonlinear ponderomotive force. Electrons trapped in the wake can be ac-
celerated to high energy. Existing glass lasers of power density 10'*W/cm?® shone on plas-
mas of densities 10'® cm™? can yield gigaelectronvolts of electron energy per centimeter
of acceleration distance. This acceleration mechanism is demonstrated through computer
simulation. Applications to accelerators and pulsers are examined,
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- Typical laser-plasma accelerated electron parameters
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A few methods for improving the energy spread in the non-
linear regime have been proposed:

- to use two plasma stages with constant but not equal plasma densities and a
transient stage with varying density between them for the beam modulation
[S. Bulanov at al.].

An energy spectrum better than 3 % for a 1 GeV beam has been numerically
and in experiment has demonstrated a low energy spectrum < = 3 % [A.].
Gonsalves et al.] for a similar distribution of the plasma density (decreasing in
the first stage and constant in the second one).

- ponderomotive injection using two synchronized laser pulses was proposed
[D. Umstadter, J.K. Kim, E.Dodd ]. Two lasers can also excite a beat wave in
the plasma, which is then used for bunching [E.Esarey et al. ].

- with a third laser pulse this method can produce “cooled” electron beams
[E.Esarey, W.P. Leemans |.

- method of controlled electron self-injection in wave breaking regime has
been also proposed [S. P. D. Mangles et al. ], and an energy spread of = 3 %
has been demonstrated experimentally 8



- Beam pre-bunching lead to the higher capturing
and lower spectra

Considering LPWA, two regimes are distinguished: the underdense plasma, in
which ©°r° /A ,>> a, /2y, , (quasi linear regime) and the non-linear regime with
n'rt /N, <<ay/2y,. Here r, is the laser spot size, ag=eA/W, normalized laser
intensity,y, =(1+a, /2)"* .  The electron beam dynamics is different in the two
regimes.

The idea:

The plasma channel is divided into two stages. The plasma density slowly
decreases in the first, pre-modulation stage, and is constant in the second, the
main accelerating stage.

The following assumptions are made: the beam is injected externally, the
amplitude of the electric field does not vary on the scale of the time of flight, the
plasma i1s cold, linear and collisionless, the space charge field of the injected
electrons is much lower than the plasma.

Results: 200 MeV+ 4-5 %, K [?]40-45 % (for the second stage [?]70 %). This
results are closer to the classic RF linac, but not enough yet for main
apnlications. 9




The idea # 2:

This scheme is similar to the multigap klystron buncher of conventional RF linac
and based on a number of short plasma sub-stages (several A, long each)
separated by drift gaps. The plasma density distribution in the sub-stages can be
simulated using standard functions (step, Gauss, etc.). The step function was
chosen for the simulation. The distribution was expanded into series. Changing
the number of terms in the series allows for shape adjustment of the plasma
density profile.
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It 1s clear that the electrons are effectively bunched and
captured into acceleration in the main stage. The spectrum 1is
lower than 3 % and decreases with energy. The part of
electrons are decapturing of acceleration and part of electrons
having maximal energy decreases from 70 % for 120 MeV to

40-45 % for 400 MeV. But such dependence is typical for
conventional RF linac also.
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- Problem of the longitudinal instability
CHANNEL WITH RAMPED PLASMA DENSITY DISTRIBUTION

Time depended longitudinal(a) and transverse (b) fields on the axis at the
beginning and at the middle (c) of the buncher

Time depended electrons injection to buncher
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(a) Longitudinal (red dash line) and transverse (blue dash line) plasma wave electric field
distribution in buncher at the mean beam radius,

(b) The upper part shows plasma self field potentials distribution and lower - charge
particles distribution. Black and red points correspond to plasma electrons and ions
accordingly. Injected electrons are presented at the lower part of the figure by blue
points near the potential maximum.

Simulations were done by SUMA 14
electrodynamics + PIC code



Time depended (time step 100 fs) potential and charged
particles distributions (lower part) in the channel with
constant plasma density 10>* m? (Fig. a).

Time depended potential and charged particles
distributions in the channel with ramped plasma
density (Fig. b).
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Time depended (time step
400 fs) electron bunch (green
dots), longitudinal (red dash
line) and transverse (blue dash
line) plasma wave electric
field distribution in channel at
the mean beam radius with (b)
and without (a) iris.
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Conclusions:

 The basic idea of klystron-like beam pre-modulation for linear mode laser
plasma wake-field acceleration was discussed.

* The energy spread is not higher than 3 % for 100 MeV beams which is much
lower than for other LPWA bunching schemes.

* The capturing coefficient is high also and it is achieved up to 70-75 %.

 The interesting effect defines the longitudinal electron motion instability
inside of the LPWA channel was observed, investigated and explaned.

Thank You for attention !
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