Analysis of Channeling Experiments in

 Diamond and Silicon Single Crystals with the Aid of the Fokker-Planck EquationHartmut Backe, Werner Lauth, and Thu Nhi Tran Thi ${ }^{1)}$
Institute for Nuclear Physics
Johannes Gutenberg University of Mainz
${ }^{1)}$ X-ray Optics Group, ESRF, Grenoble

Outline

1. Motivation
2. MAMI Experiments on Diamond
3. Analysis of MAMI Experiments on Diamond with Solutions of a Fokker-Planck Equation
4. Results from a Modified Fokker-Planck Equation for (111) Channeling of Electrons in a Bent Silicon Single Crystal (SLAC Experiment)
5. Conclusions

1. Motivation

Is an intense photon source with micro-undulators and electrons feasible?
W. Greiner, A.V. Solov'yov, and A.V. Korol et al.

Results: Planar Channeling of Electrons in Diamond

Motivation: Micro-Undulator

$$
R=6.60 \mathrm{~mm} \quad B_{\text {equiv }}=\frac{p V}{\mathrm{e} R c}=223 \text { Tesla } \quad K=\gamma \cdot A \cdot \frac{2 \pi}{\lambda_{U}}=0.216
$$

Photon energy

$$
\begin{aligned}
& \mathrm{h} \omega=k \frac{4 \pi \cdot \gamma^{2} \mathrm{hc}}{\lambda_{\nu}\left(1+K^{2} / 2+\gamma^{2}\left(\theta_{x}^{2}+\theta_{y}^{2}\right)\right)}=131.6 \mathrm{keV} \\
& \text { at } \theta_{x}=\theta_{y}=0, \text { and first order } k=1
\end{aligned}
$$

How long remains an electrons in a channel? (Classical picture)

2. MAMI Experiments on Diamond

Basic Setup for the De-channeling Measurement with Electrons at MAMI

Screen

Planar Channeling Characteristics Angular ? - Scans at 855 MeV

Flat crystal

High energy loss of electron after emission of a Bremsstrahlung photon with \hbar ? ? $855 \mathrm{MeV} / 2$

Analysis of De-channeling Length Measurements for Diamond (110)

$f_{c h}{ }^{\prime}(x)+f_{c h}(x) A \cdot\left[\lambda_{d e}(x)-\lambda_{r e}(x)\right]=0$

$$
g_{c h}(x)=C \int_{0}^{x} f_{c h}\left(x^{\prime}\right) d x^{\prime}
$$

Crucial point: $\quad\left[\lambda_{d e}(x)-\lambda_{r e}(x)\right] \quad$ required for analysis
A and C are fit parameters leading to the asymptotic de-channeling length

$$
L_{d e}^{x \rightarrow \infty} ; \frac{1}{A \cdot \lambda_{d e}(x=500 \mu \mathrm{~m})}
$$

3. Analysis of MAMI Experiments on

 Diamond with Solutions of a Fokker-Planck Equation
The Fokker-Planck equation

$$
\frac{\partial F\left(x, E_{\perp}\right)}{\partial x}+\frac{\partial J\left(x, E_{\perp}\right)}{\partial E_{\perp}}=0
$$

$$
J\left(x, E_{\perp}\right)=-\frac{\partial}{\partial E_{\perp}}\left[D_{e}^{(2)}\left(E_{\perp}\right) F\left(x, E_{\perp}\right)\right]+D_{e}^{(1)}\left(E_{\perp}\right) F\left(x, E_{\perp}\right)=J_{\text {diff }}\left(x, E_{\perp}\right)+J_{\text {drifit }}\left(x, E_{\perp}\right)
$$

$$
f_{c h}(x)=\int_{E_{\perp}=0}^{U_{n}} F\left(x, E_{\perp}\right) d E_{\perp}
$$

Channel with $E_{\perp} / U_{n} \leq 1$

De- and Re-channeling Rates $? d$ and $?$ re De- and Re-channeling Lengths $L_{d e}$ and $L_{r e}$

Definition of de- and re-channeling rates ?

Definition of de-and re-channeling lengths L

$$
L_{d e}(x)=\frac{1}{\lambda_{d e}(x)} \quad L_{r e}(x)=\frac{1}{\lambda_{r e}(x)}
$$

Essential Ingredients of the Fokker-Planck Equation

Drift coefficient (Kitagava-Ohtsuki)

$$
D_{e}^{(1)}\left(E_{\perp}\right)=\frac{E_{s}^{2}}{2 p v X_{0}} \int_{y_{\text {min }}}^{y_{\text {max }}} \frac{d P}{d y}\left(E_{\perp}, \eta\right) \frac{d_{p}}{\sqrt{2 \pi} u_{1}} \exp \left[-\eta^{2} / 2 u_{1}^{2}\right] d \eta
$$

$X_{0}=0.1213 \mathrm{~m}$ is radiation length, $u_{1}=0.04226 \AA$ thermal vibration amplitude, $E_{s}=15.0 \mathrm{MeV}$ standard scattering parameter, $p v=855 \mathrm{MeV}, U_{0}=22.34 \mathrm{eV}$ potential depth

Standard probability for a quasi-periodic transverse motion

Evaluation of the Scattering Parameter E_{s}

Dlectromagnetic Processes at High Bnergies in Oriented Single Ciystals

250 Electromagnetic Processes at High Energies in Oriented Single Crystals
For positrons at $\vartheta_{0}=0$, we have

$$
\begin{equation*}
d N_{+}=\frac{d^{2} \rho}{s} \ln \left(\frac{1}{1-\pi \rho^{2} / s}\right) \tag{9.66}
\end{equation*}
$$

At last, note that the quantum features of the motion at axial channeling become unessential for lower energies compared to the planar case. This is connected with both the large value of the potential well depth U_{0} and the two-dimensional character of the problem.
10. DECHANNELING
10.1. Diffusion at Planar Channeling in Thick Crystals

As it was noted, the distribution function (DF) of particles over transverse energy $\varphi\left(\varepsilon_{\perp}\right)$ is an important characteristic of motion. In thin crystals, this $\begin{aligned} & \begin{array}{l}\text { funct } \\ \text { proce } \\ \text { distr } \\ \text { parti } \\ \text { a res }\end{array}\end{aligned} \theta_{\text {plane }}^{2}=\left(\frac{E_{s}}{P V}\right)^{2} \frac{L_{\text {de }}^{\text {Baier }}}{X_{0}}=\frac{2 U_{0}}{P V}=\left.\Psi_{\text {crit }}^{2}\right|_{\text {he }} ^{\text {he }}$ he
l_{d} over which the root mean square angle of scattering becomes equal to the critical channeling angle ϑ_{c} (the Lindhard angle):

$$
\begin{equation*}
l_{d}=\frac{\alpha \rho_{0}}{2 \pi} L_{\mathrm{rad}}, \quad \rho_{0}=\frac{2 U_{0} \varepsilon}{m^{2}} \tag{10.1}
\end{equation*}
$$

$$
E_{s, \text { Baier }}^{2}=\frac{2 \pi}{e^{2}} m^{2} \Rightarrow \frac{2 \pi}{\alpha}\left(m_{e} c^{2}\right)^{2}=(15.0 \mathrm{MeV})^{2}
$$

see also: B. Rossi and K. Greisen, Cosmic-ray theory, Rev. Mod. Phys. 13 (1941) 240 § 22. Multiple Scattering. Calculation of the Mean Square Angle of Scattering

Variance of Scattering Angle according to Baier et al. for Diamond at 855 MeV $\theta_{\text {plane }}^{2}=\left(\frac{E_{s, \text { Baier }}}{p v}\right)^{2} \frac{x}{X_{0}} \quad E_{s, \text { Baier }}^{2}=\frac{2 \pi}{e^{2}} m^{2} \Rightarrow \frac{2 \pi}{\alpha}\left(m_{e} c^{2}\right)^{2}=(15.0 \mathrm{MeV})^{2}$

Modified Variance of Scattering Angle at Small Thicknesses for Diamond at 855 MeV

Conclusion: $E_{s}=10.6 \mathrm{MeV}$ has to be used always instead of $E_{s}=15.0 \mathrm{MeV}$

Various De-channeling Lengths for Diamond (110)

$$
L_{d e}^{\text {Baier }}=\frac{2 U_{0} p v X_{0}}{E_{s}^{2}}
$$

Drift coefficient (Kitagava-Ohtsuki)

$$
D_{e}^{(1)}\left(E_{\perp}\right)=\frac{E_{s}^{2}}{2 p v X_{0}} \int_{y_{\min }}^{y_{\text {max }}} \frac{d P}{d y}\left(E_{\perp}, \eta\right) \frac{d_{p}}{\sqrt{2 \pi} u_{1}} \exp \left[-\eta^{2} / 2 u_{1}^{2}\right] d \eta
$$

Simulation calculation with MBN explorer software package A.V. Korol et al.,

Eur. Phys. J. D 71 (2017) 174

Modelling the Fokker-Planck Equation

n_{p} is distribution of the positive charge
n_{e} is distribution of the positive charge (neglected)

Potential calculated in Molière approximation

Modified Channel Occupation Probability $d P / d y$

Modification by introducing heuristically an ? $=22.3 \mathrm{eV}$ in
$\frac{d P}{d y}\left(y, E_{\perp}\right)=\frac{2}{T\left(E_{\perp}\right)} \sqrt{\frac{\gamma m_{e}}{2\left(E_{\perp}+\varepsilon-U(y)\right)}}$

$$
T\left(E_{\perp}\right)=2 \int_{y_{\min }}^{y_{\max }} \sqrt{\frac{\gamma m_{e}}{2\left(E_{\perp}+\varepsilon-U(y)\right)}} d y
$$

De-channeling Lengths for Diamond (110) with Results of the Modified Drift Coefficient

Obtain $\left[\lambda_{d e}(x)-\lambda_{r e}(x)\right]$ from solution of modified Fokker-Plank equation and solve

$$
f_{c h}^{\prime}(x)+f_{c h}(x) A \cdot\left[\lambda_{d e}(x)-\lambda_{r e}(x)\right]=0
$$

$$
\begin{aligned}
& L_{d e}^{x \rightarrow 500 \mu \mathrm{~m}}=\frac{1}{\lambda_{d e}(x \rightarrow 500 \mu \mathrm{~m})} \\
& =17.0 \mu \mathrm{~m}
\end{aligned}
$$

Corresponds in a good approximation to the asymptotic de-channeling length

De-channeling Lengths for Diamond (110) with Results of the Modified Fokker-Planck Equation

Difference $\left[\lambda_{d e}(x)-\lambda_{r e}(x)\right]$ is taken from solution of the Fokker-Planck equation with $E_{s}=10.6 \mathrm{MeV}$ and modified $\mathrm{d} P / \mathrm{d} y$.

4. Results from a Modified FokkerPlanck Equation for (111) Channeling of Electrons in a Bent Silicon Single Crystal (SLAC Experiment)

T. N. Wistisen, U. I. Uggerhøj, U. Wienands, T.W. Markiewicz, R. J. Noble, B. C. Benson, T. Smith, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, A. Mazzolari, R. Holtzapple, and S. Tucker

Phys. Rev. ST-AB 19, 071001 (2016)

Target Setup and Intensity Distribution on a Luminescence Screen for Channeling of Electrons in a Bent Silicon Single Crystal at FACET (SLAC)

De-channeling Length Measurements at (111) Bent Silicon Single Crystal (SLAC)

T. N. Wistisen, U. I. Uggerhøj, U. Wienands,et al., Phys. Rev. ST-AB 19, 071001 (2016)

Modification of Fokker-Planck Equation in Bent Crystal

$$
\begin{array}{cc}
\frac{\partial F\left(x, E_{\perp}\right)}{\partial x}+\frac{\partial J\left(x, E_{\perp}\right)}{\partial E_{\perp}} . & =0 \\
J\left(x, E_{\perp}\right)=-\frac{\partial}{\partial E_{\perp}}\left[D_{e}^{(2)}\left(E_{\perp}\right) F\left(x, E_{\perp}\right)\right]+D_{e}^{(1)}\left(E_{\perp}\right) F\left(x, E_{\perp}\right) &
\end{array}
$$

continuity equation with density F and current J

Solution of Modified Fokker-Planck Equation for (111) Bent Silicon Single Crystal with $R=0.15 \mathrm{~m}$

Blue: MBN Explorer calculations of G.B. Sushko, A.V. Korol, A.V. Solov‘yov NIM B 355 (2015) 39

5. Conclusion

1. De-channeling lengths were measured for straight crystals and compared with results from the Fokker-Planck equation. A modified scattering parameter $E_{s}=10.6 \mathrm{MeV}$ must be used.
2. The results are also sensitive on the probability $\mathrm{d} P / \mathrm{d} y(y)$ across the channel coordinate y.
3. Our analysis of the de-channeling length is model dependent!

Difference $\left[?_{\text {de }}(x)\right.$ - $? ?_{\mathrm{re}}(x)$] is taken from solutions of the FokkerPlanck equation!
4. Results from simulation calculations of $\left[?_{\mathrm{de}}(x)-?_{\mathrm{re}}(x)\right]$ as well as $\mathrm{d} P / \mathrm{dy}(y)$ would help to improve our analysis.
5. The de-channeling length measurements at (111) bent silicon single crystal (SLAC) were calculated with a modified FokkerPlanck equation with additional drift term due to centrifugal force.
6. For further details see recent references quoted in the abstract.

H. Backe
W. Lauth
Thu Nhi Tran Thi

Institute for Nuclear Physics
University of Mainz
X-ray Optics Group, ESRF, Grenoble

References to presented work:
H. Backe, W. Lauth, and Thu Nhi TRAN THI, Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI, JINST 13 (2018) C04022
H. Backe, Electron channeling experiments with bent silicon single crystals - a reanalysis based on a modified Fokker-Planck equation, JINST 13 (2018) C02046

Support by the European Commission (the PEARL Project within the H2020-MSCA-RISE-2015 call, GA 690991) is gratefully acknowledged.

Many thanks in particular to Andrey V. Solov'yov and Andrei V. Korol for fruitful cooperation and discussions.

