

X-Ray Optics Lab

Influence of uncertainties on optimized parameters in X-ray differential phase contrast imaging system

<u>Rezaev Roman^{*,#}</u>, Smirnova Ekaterina[#], Gogolev Aleksey

*Moscow Engineering Physics Institute, Russia #Dresden Institute of Solid State Material, IFW, Germany

Channeling 2018, Sept. 23-28

15 slides

- 1. X-ray imaging and tomography
- 2. Talbot effect as the engineering basics
- 3. Deterministic design
- 4. Uncertainty quantification
- 5. Uncertainty based design
- 6. Comparison of uncertainty and deterministic strategy
- 7. Conclusion: examples of parameters shift

X-ray imaging techniques

Approaches to X-ray imaging

Absorption based technology

X-ray imaging techniques

Approaches to X-ray imaging

Scattering based technology

X-ray imaging techniques

Approaches to X-ray imaging

Interference based technology

Tomography principles

No matter which method of imaging used – principles are similar

Engineering of basics

Design of a technical supporting system to provide a better characteristics

Deterministic design

Some details of optimization techniques

The transmission functions of the phase grating

 $T_1(x) = \exp(i\varphi U_1(x))$

The wave field downstream

 $\psi_z(x) = I_0(T_1(x) * P_z(x))$ $P_z(x) = \frac{1}{i\lambda z} \exp(i\pi \frac{x^2}{\lambda z})$

The projected source intensities for Talbot (T) and Talbot-Lau (TL)

$$S_{\mathrm{T}}'(x) = \frac{1}{\sigma_{\mathrm{s}}'\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_{\mathrm{s}}'^2}\right) \quad S_{\mathrm{TL}}'(x) = T_{\kappa_0,\tau_0}(x)$$

The fringe visibility of the phase-stepping curve

$$V = 2 \frac{|\hat{I}_{p}[1]|}{|\hat{I}_{p}[0]|} \qquad V_{S,TL}^{*} = \frac{\kappa_{0}(1-\tau_{0})\operatorname{sinc}(\kappa_{0})}{\tau_{0}+\kappa_{0}(1-\tau_{0})}$$
$$V_{S,T}^{*} = \exp\left(-2\left(\pi \frac{d}{l}\frac{\sigma_{s}}{p_{2}}\right)^{2}\right)$$

The smallest detectable refraction angle

$$\alpha_{\min,T} = \frac{1}{2\pi} \frac{p_2^2}{V_{\rm T}(p_2 - p_{11})} \frac{\sqrt{2}}{a\sqrt{I_0 D t_{\rm exp}}} \quad \alpha_{\min,T\rm L} = \frac{1}{2\pi} \frac{p_0 + p_2}{V_{\rm T\rm L}} \frac{\sqrt{2}}{a\sqrt{I_0 D t_{\rm exp}}}$$

Thüring T, Stampanoni M 2014 Phil. Trans. R. Soc. A 372 20130027

Deterministic design

Optimization of the geometry

Minimization of standard deviation of the refraction angle

Deterministic design

Thüring T, Stampanoni M 2014 Phil. Trans. R. Soc. A 372 20130027

Optimization of the geometry

Parameters of G2 grating

$p_2, \mu m$	τ2	κ ₂	$\min \gamma_1$
	0	0.371	2.0822
2.4	0.2	0.426	2.9677
	0.4	0.455	4.3387
	0.6	0.474	7.0023

Period of G1 grating and std source size

p_{11} , µm	σ_s , µm	min γ_2
1.711	0.8	0.0133
1.973	1.6	0.0161
2.09	2.4	0.0185
2.156	3.2	0.0207
2.199	4	0.0227

Uncertainty quantification

The interference based technology is very sensitive to deviations

UQ is the end-to-end study of the impact of all forms of error and uncertainty in the models arising in the applications

Multidimensional problems - "curse of dimensionality"

Uncertainty-based design

Parameters with uncertainties of Talbot interferome

G ₂ grating	Duty cycle	
	Transparent coe	
	Period	
G ₁ grating	Period	
Std of Source size		

 $\begin{aligned} \kappa_2 \sim Normal(\mu_{\kappa_2}, 5\%), \mu_{\kappa_2} \in & [0.02, 0.5] \ \mu m \\ \tau_2 \sim Normal(\mu_{\tau_2}, 5\%), \mu_{\tau_2} \in & [0.02, 0.5] \ \mu m \\ p_2 \sim Normal(2.4 \ \mu m, 5\%) \\ p_{11} \sim Normal(\mu_{p_2}, 5\%), \mu_{p_2} \in & [1.2, 2.4) \ \mu m \\ \sigma_s \sim Normal(0.8, 5\%) \end{aligned}$

Uncertainty Quantification

Refined Stratified sampling Latin hypercube sampling Simple random sampling

Uncertainty-based design

Comparison of different methods

Uncertainty-based design

2.18 UQ $-\gamma_1$ for deterministic 2.175 $\langle \gamma_{\star} \rangle$ for stochastic Std of Source size $\sigma_{\rm s} \sim Normal(0.8,5\%)$ $p_2 \sim Normal(2.4 \, \mu m, 5\%)$ G₂ grating period 2.17 3 2,165 2.16 2.155 Design G1 parameters to maximize visibility 0.34 0.36 0.38 0.4 0.42 std of 4% difference Exact solution Uncertainty solution source size 0.0 $-\gamma_2$ for deterministic min y_2 $\langle p_{11} \rangle$, µm p₁₁, μm min $\langle \gamma_2 \rangle$ $\sigma_{\rm s}, \mu m$ $\sigma_{p11}, \mu m$ 0.018 $\langle \gamma_2 \rangle$ for stochastic 0.8 0.0133 5% 0.0138 1.7105 1.7075 0.017 1.6 5% 1.973 0.0161 1.9457 0.0173 ~ 0.016 2.4 2.0121 0.15% 2.0897 0.0185 ▲0.0223 0.015 3.2 2.1561 0.0207 -2.1979 0.0227 4 0.014 0.013 1.7 1.5 1.6 1.8 1.4 $\times 10^{-6}$ **p**₁ 21% difference

Instead of conclusion: an example

Redesign parameters to recover initial visibility

Std of source size Period G₂ $\sigma_s \sim Normal(0.8 \ \mu m, 5\%)$ p₂ $\sim Normal(2.4 \ \mu m, 5\%)$

Solution with uncertainty Deterministic solution

$\langle p_{11} angle$, µm	$\min\langle \gamma_2 \rangle$	p ₁₁ , μm	min γ_2
1.7075	0.0138	1.7105	0.0133

Redesigned parameters to rich initial visibility

$\langle p_{11} angle$, µm	$\langle p_2 \rangle$, µm	$\langle \sigma_s angle$, µm	$min\langle \gamma_2 \rangle$
1.56	2.16	0.77	0.01334

Waiting for experiments...

The very last slide

Thanks for attention!