Optical Cherenkov Diffraction Radiation as a Tool for Non-invasive Charged Particle Beam Diagnostics

P. Karataev, M. Bergamaschi, and K. Lekomtsev
John Adams Institute for Accelerator Science, UK

CesrTA, Cornell University, USA

R. O. Jones, R. Kieffer, T. Lefevre, S. Mazzoni, and F. Roncarolo,
European Organisation for Nuclear Research, Switzerland

V.V. Bleko, A. S. Konkov, and A. P. Potylitsyn,
National Research Tomsk Polytechnic University, Russia

L. Bobb
Diamond Light Source Ltd., UK

A. Aryshev and N. Terunuma
KEK: High Energy Accelerator Research Organization, Japan
• Basic concept
• Advantages and Motivation
 – Theoretical expectation
• Experiment at Cornell CesrTA facility
 – Observation of Cherenkov Diffraction Radiation
 – Beam size
 – Beam direction
 – Electron-positron beam collision control
• Experiment at KEK-ATF2 extraction line
 – Beam size measurements
• Conclusion
 – Main achievements
 – Future plans and prospects
• Cherenkov radiation was discovered in 1958 by Pavel Cherenkov;
• It appears when a fast charged particle moves in a medium with velocity higher than the speed of light.

The angle θ is defined by a simple relation

$$\cos(\theta) = \frac{1}{\beta n}$$

where β is the speed of charged particle in units of the speed of light and n is the refractive index.
Basic Concept – Cherenkov Diffraction Radiation

- To generate Cherenkov radiation the particle does not have to move through the material;
- In relativistic case the charged particle field can reach macroscopic dimensions;
- Passing in the vicinity of a medium a fast charge particle will polarize the surface of it generating Cherenkov radiation;

However:
- The target does not surround the particle beam anymore. It introduces a new angular distribution, different from classical ChR;
- Dependence on impact parameter adds additional wavelength dependence.
Advantages and motivation

• Advantages:
 – Non-invasive way to generate;
 – High directivity enabling to separate the ChDR from co-propagating synchrotron radiation background;
 – High intensity, which can be adjusted by increasing the length of the radiator

• Motivation:
 – Development of diagnostics instrument:
 • Beam size, emittance, position, direction and arrival time.
• Polarization Current Approach (PCA) references:

Calculation parameters:
• $a = 18.5$ mm
• $\phi = 30^0$
• $E_e = 5.1$ GeV
• $\varepsilon(\lambda) = 2.1$
Theoretical expectations

- **Angular distribution:**
 - Vertical polarization component
 - Horizontal polarization component
• **Spectrum:**

![Graph showing spectrum and theoretical expectations.](image)

- $l = 600 \pm 10\text{nm}$
- $l = 400 \pm 10\text{nm}$

Imperial College London

Channeling 2018, Ischia, Italy, 2018 8 Pavel Karataev, JAI
Theoretical expectations

- Dependence on impact parameters:

\[
\text{Photon yield (ph/e) } \times 10^{-3}
\]

<table>
<thead>
<tr>
<th>Impact parameter (mm)</th>
<th>Total</th>
<th>V - polarization</th>
<th>H - polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental installation in Cornell Uni.

- **CesrTA: Cornell Electron/positron Storage Ring Test Accelerator**

 Both image and angular distribution can be measured

Experimental installation in Cornell Uni.

Two target geometries (fused silica)

• a) Prismatic radiator

\[\text{SiO}_2 \quad (\epsilon(\omega), \sigma(\omega)) \]

\[\text{ChDR} \quad 40^\circ \]

\[90^\circ \quad 29^\circ \quad 46^\circ \]

Positron \((\beta, \gamma)\) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

• b) Flat radiator

\[\text{Sand-blasted surface} \quad \text{(diffusivity of 20 degree)} \]

\[\text{Optical detection system at 40°} \]

\[\text{SiO}_2 \quad (\epsilon(\omega), \sigma(\omega)) \]

\[\text{ChDR} \quad 46^\circ \]

Positron \((\beta, \gamma)\) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Two target geometries

• Positrons with energy of 5.3 GeV

(a) Cherenkov Diffraction Radiation

(b) Cherenkov Diffraction Radiation

Comparison between experiment and theory

- Angular distribution

H – polarization

Experiment

- **Theory**

• Dependence on impact parameter

Image of ChDR and Beam Size

- Positrons with energy of 5.3 GeV

• Positrons with energy of 5.3 GeV

\(r = 1.37 \text{ mm} \)
\(r = 1.32 \text{ mm} \)
\(r = 1.08 \text{ mm} \)
\(r = 0.9 \text{ mm} \)

Dependence on impact parameter

Channeling 2018, Ischia, Italy, 2018
Prismatic target

Optical detection system at 40°

Electrons

Positrons

Channeling 2018, Ischia, Italy, 2018

Pavel Karataev, JAI
Beam size changes from sub-micron to hundreds of micron dimensions
Experimental installation at KEK-ATF2
Experimental installation at KEK-ATF2
OTR reference beam size measurement

Profiles

Image - noise pedestal with negative to 0

Horizontal rms is: 30.08±0.93 um

Vertical rms is: 67.22±1.36 um
Experimental results at KEK-ATF2

Optical ChDR beam size measurement

Vertical beam profile

ChDR image

Vertical rms: 63.49 μm
Main Achievements

- Directly observed ChDR from a fused silica target;
- Good consistency with theory:
 - Angular distribution
 - Dependence on impact parameter
- Sensitivity to the beam parameters
 - Beam direction in two dimensions
 - Beam position
 - Beam size down to 65µm, actual resolution?
 - Beam divergence, emittance, arrival time are yet to be measured
Conclusion

• Plans and Prospects:
 – Develop theory for a Line Spread Function;
 – Observe the LSF in KEK-ATF2:
 • Determine actual resolution
 • Emittance diagnostics
 – Detailed studies of Coherent ChDR
 • Bunch length diagnostics
 • THz radiation generation
 – Develop simulation technology
 • CST Studio Suite; V-SIM; ZEMAX
 – Optimize radiator geometry for a given application