Measuring the magnetic dipole moment of the τ lepton using bent crystals at LHC

<u>A. Fomin¹</u>, A. Korchin¹, P. Robbe², A. Stocchi²

¹NSC Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine

²LAL (Laboratoire de l'Accélérateur Linéaire), Université Paris-Sud/IN2P3, Orsay, France

The 8th International Conference Channeling 2018 September 23-28, 2018 Ischia (NA), Italy

INTRODUCTION: Magnetic dipole moment (MDM) of short-living particles

$$ec{\mu}=rac{g}{2}\,rac{e}{m}\,ec{S},\qquad ec{S}=rac{\hbar}{2}ec{\sigma}$$

 $|g| = 2 \rightarrow$ a point-like Dirac particle

 $|g| \approx 2 \rightarrow$ a radiative corrections

 $|g| \approx 2 \rightarrow$ a composite structure or NP

Particle	ст	g-factor		Comments	Experir	nent
e-		- 2.002 319 304 361 82 (52)	exp.	most accurate determinations of α	Harvard	2008
μ-	659 m	- 2.002 331 8 <mark>361</mark> (10)	theor.	SM prediction		
		– 2.002 331 8 <mark>418</mark> (13)	exp.	3.4 σ deviation	BNL: E821	2006
τ-	87 µm	- 2.002 354 42 (10)	theor.	SM prediction		
		– 2.0 <mark>36 (34</mark>)	exp.	σ (e+e- → e+e- τ+τ-)	LEP2: DELPHI	2004
		– 2.002 (6)	exp.	assuming EDM $_{\tau} = 0$	from LEP and SLD	2000
		no direct measurement	exp.	Proposed in the current study		
р		+ 5.585 694 702 (17)	exp.			
n		- 3.826 085 45 (90)	exp.			
Σ+	2.4 cm	+ 6.233 (25)	exp.	world-average value		
		+ 6.1 (12) _{stat} (10) _{syst}	exp.	using Bent Crystals	Fermilab	1992
Λ _c +	60 µm	+ 1.90 (15)	theor.	assuming $g_c \approx 2$		
		not measured	exp.	Feasibility studies at LHC		

 $D^+_{\circ} \to \tau^+ \nu_{\tau}$

 $\vec{P}_{\perp}(\theta, 0) \approx -\vec{P}_{\perp}(\theta, \pi).$ $\theta_{max}(E_D = 2 \,\text{TeV}) \approx 100 \,\mu rad$

$$p p \to D_s^+ \dots \to \tau^+ \dots \to 2\pi^+ \pi^- \dots$$

- we need to select events: $D_{s^+} \Rightarrow \tau^+ \Rightarrow 2\pi^+\pi^-$ out of the background: $X^+ \Rightarrow 2\pi^+\pi^-$
- directions of D_{s^+} and τ^+ momenta should be measured very accurately $\Delta \theta < 100 \mu rad$

$$\eta^*(L_v, E_D, \varepsilon_\tau^*) = Br_i \; \frac{e^{-L_v / T_D} - e^{-L_v / T_\tau}}{T_D / T_\tau - 1}$$

 $T_i = c \, \tau_i \gamma_i \quad c \, \tau_D \approx 150 \, \mu \mathrm{m}$ $c \tau_{-} \approx 87 \, \mu \mathrm{m}$

$$\eta(L_{\rm v}, E_D) = \frac{\int_{\tau}^{\varepsilon_{\tau}^{max}} d\varepsilon_{\tau} \frac{\partial N_{\tau}}{\partial \varepsilon_{\tau}}}{\int_{\tau}^{\varepsilon_{\tau}^{max}} \int_{0}^{L_{\rm v}} dx \frac{\partial N_{\rm prod}}{\partial x} N_{\rm dec} (L_{\rm v} - x)}{\int_{\varepsilon_{\tau}^{max}}^{\varepsilon_{\tau}^{max}} d\varepsilon_{\tau} \frac{\partial N_{\tau}}{\partial \varepsilon_{\tau}}} \frac{\delta N_{\tau}}{\delta \varepsilon_{\tau}}}{\int_{\varepsilon_{\tau}^{min}}^{\varepsilon_{\tau}^{max}} d\varepsilon_{\tau} \frac{\partial N_{\tau}}{\partial \varepsilon_{\tau}}}$$

Alex Fomin et al.

Measuring the MDM of the τ lepton using bent crystals at LHC

$$p p \to D_s^+ \dots \to \tau^+ \dots \to 2\pi^+ \pi^- \dots$$

- we need to select events: $D_{s^+} \Rightarrow \tau^+ \Rightarrow 2\pi^+\pi^-$ out of the background: $X^+ \Rightarrow 2\pi^+\pi^-$
- directions of D_{s^+} and τ^+ momenta should be measured very accurately

Problems: – the background overload,

- the telescope should have a very high angular resolution $\Delta \theta < 100 \mu rad$ on a rather short base $L_v \sim 10 cm$.

PRINCIPLE OF MEASUREMENT: The idea of setup

SENSITIVITY STUDIES: Spectrum and polarisation of deflected **T** leptons

$$\begin{aligned} \mathbf{Spectra:} \quad & \frac{\partial N_{\tau}^{\text{def}}}{\partial \varepsilon_{\tau}} = \int_{0}^{\varepsilon_{\text{max}}} dE_D \, \frac{\partial N_D}{\partial E_D} \, \eta \left(L_{\mathbf{v}}, E_D \right) \, \frac{\partial N_{\tau}}{\partial \varepsilon_{\tau}} (E_D) \, \eta_{\text{coll}}(E_D, \varepsilon_{\tau}) \, \eta_{\text{chan}} \left(\varepsilon_{\tau} \right) \end{aligned} \\ \mathbf{P}_{z}(\varepsilon_{\tau}) &= \frac{1}{\partial N_{\tau}^{\text{def}} / \partial \varepsilon_{\tau}} \int dE_D \, \frac{\partial N_D}{\partial E_D} \, \frac{\partial N_{\tau}^{\text{def}}}{\partial \varepsilon_{\tau}} (E_D) \, \mathbf{P}_{z}(E_D, \varepsilon_{t}) \end{aligned} \\ \mathbf{P}_{x}(\varepsilon_{\tau}) &= \frac{1}{\partial N_{\tau}^{\text{def}} / \partial \varepsilon_{\tau}} \int dE_D \, \frac{\partial N_D}{\partial E_D} \, \frac{\partial N_{\tau}}{\partial \varepsilon_{\tau}} (E_D) \, \mathbf{P}_{\perp}(E_D, \varepsilon_{\tau}) \, \frac{1}{\pi} \int_{\phi_{min}(\varepsilon_{\tau})}^{\phi_{max}(\varepsilon_{\tau})} \sin \phi \, d\phi. \end{aligned}$$

Alex Fomin et al. Measuring the MDM of the τ lepton using bent crystals at LHC

SENSITIVITY STUDIES: The setup efficiency (target + two crystals)

 N_{p} is the integral number of protons,

 $\eta_{\rm det}$ is the detector efficiency

S is the sensitivity of polarisation reconstruction by the analysis of τ decay⁽¹⁾

⁽¹⁾ J. Bernabeu et al., JHEP, 01:062, 2009

SENSITIVITY STUDIES: Background from other decay channels.

$$\Delta a_{\tau} = \sqrt{\frac{1}{N_p \ \eta_{\rm det} S^2 \ \eta_{\rm setup}}}$$

- Target (W)
 L_{tar} = 1 cm
- Crystal 1 (Ge)
 L_D = 3 cm,
 R_D = 10 m,
 - $\theta_{\rho} = 100 \ \mu rad$
- Crystal 2 (Ge)

L = 10 cm,

 $R = 7 \, \mathrm{m},$

 $\theta_v = 80 \mu rad$

 $\eta_{\text{setup}} = 10^{-10} \text{ per incident proton}$

- Double Crystal Setup at LHC $Ds^+ \Rightarrow \tau^+ v_\tau \Rightarrow 2\pi^+ \pi^- \bar{v}_\tau$
 - DELPHI: error of aMDM from LEP2 experiment γγ ⇒ τ⁺ τ⁻
 J. Abdallah et al. Eur. Phys. J., C35:159–170, 2004
- LEP & SLD: error of aMDM from various LEP and SLD experiments.
 G. A. Gonzalez-Sprinberg, et al. Nucl. Phys., B582:3–18, 2000.
- SM value: aMDM value predicted by a Standard Model
 S. Eidelman et al. Mod. Phys. Lett., A22:159–179, 2007.

Alex Fomin et al. Measuring the MDM of the τ lepton using bent crystals at LHC