

Low Emittance Muon Collider (LEMMA)

M. Antonelli (INFN-LNF)

For the LEMMA team

Outline

- Introduction
- Positron driven source
- LEMMA scheme
- Optics & Beam dynamics
- R&D on key topics
- Goal parameter table for Multi-TeV MC
- Conclusion

Muon based Colliders

- A $\mu^+\mu^-$ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μs at rest
- Great potentiality if the technology proves its feasibility
- Best performances in terms of luminosity and power consumption

Recent review paper: M.Boscolo, J. P. Delahaye and M. Palmer, ``The future prospects of muon colliders and neutrino factories," in publication by Rev.Accel.Sci.Tech. arXiv:1808.01858

Muon Source

Proton driven

Tertiary production from protons on target: $p + target \rightarrow \pi/K \rightarrow \mu$ typically $P_{\mu} \approx 100$ MeV/c (π , K rest frame) whatever is the boost P_T will stay in Lab frame

→ very high emittance at production → cooling needed production Rate > $10^{13}\mu/\text{sec}$ $N_{\mu} = 2 \cdot 10^{12}/\text{bunch}$

MAP

Positron driven

from **direct** μ **pair production**:

muons produced from $e^+e^-\rightarrow \mu^+\mu^-$ at Vs around the $\mu^+\mu^-$ threshold

($\sqrt{s} \approx 0.212$ GeV) in asymmetric collisions (to collect μ^+ and μ^-)

e⁺e⁻ annihilation: e+ beam on target

→ cooled muon beam with low emittance at production

Goal: production Rate $\approx 10^{11} \,\mu/\text{sec}$ $N_{\mu} \approx 6.10^{9}/\text{bunch}$

LEMMA

```
by Gammas (γ Nuclei\rightarrow\mu<sup>+</sup>\mu<sup>-</sup> Nuclei): GeV-scale Compton γs
```

[V. Yakimenko (SLAC)]

also: (e-Nuclei→µ+µ-e-Nuclei) W. Barletta and A. M. Sessler NIM A 350 (1994) 36-44

LEMMA: Low EMittance Muon Accelerator

Concept based on a positron driven source
It opens the perspective to a Multi-TeV Muon Collider

- Muons are produced in positron annihilation on e^- at rest \rightarrow e^+ beam impinging on target
- It is a low emittance muon source
- Low emittance concept overcomes muon cooling
- Low emittance allows operations at very high c.o.m. energy

LEMMA concept was proposed at Snowmass 2013 by M. Antonelli and P. Raimondi: M. Antonelli, "Ideas for muon production from positron beam interaction on a plasma target", INFN-13-22/LNF Note, M. Antonelli and P. Raimondi, Snowmass Report (2013)

Summary of LEMMA pro&cons features

Pro LEMMA:

 θ_{μ} is tunable with \sqrt{s} in e⁺e⁻ $\rightarrow \mu^{+}\mu^{-}$ μ beam divergence can be very small close to the $\mu^{+}\mu^{-}$ threshold

Cons LEMMA: Low µ prod. Rate

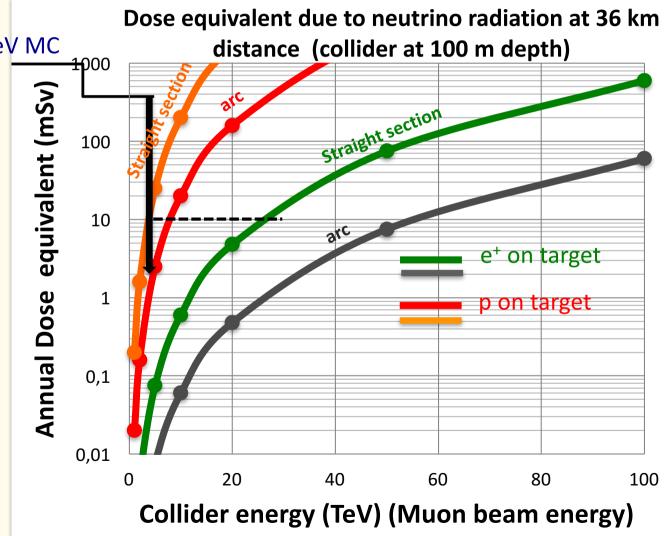
```
much smaller cross section. wrt proton-driven-source \sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \,\mu b at most wrt \sigma(\text{from p}) \approx mb
```

Pro LEMMA:

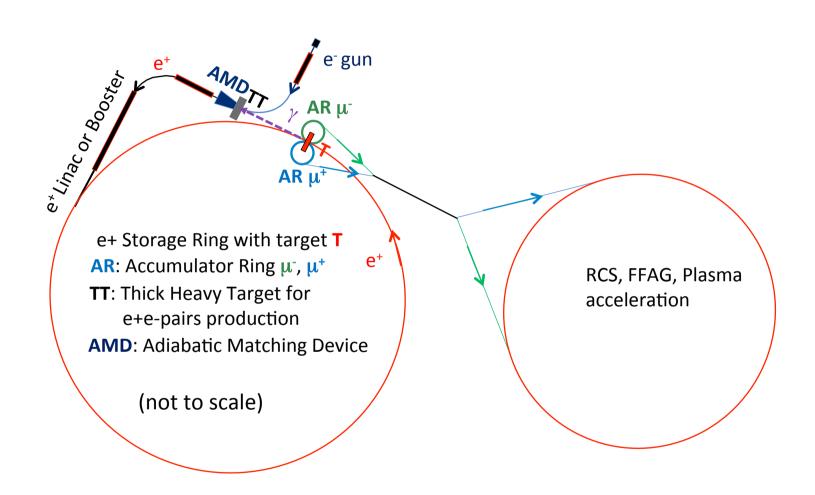
- Reduced losses from decay: high collection efficiency
- Low background: Luminosity at low emittance will allow low background and low neutrino radiation → easier experimental conditions & can go to higher energies
- Energy spread: muon energy spread might be also small at threshold, it gets larger as \sqrt{s} increases

Radiological hazard due to neutrinos from a MC

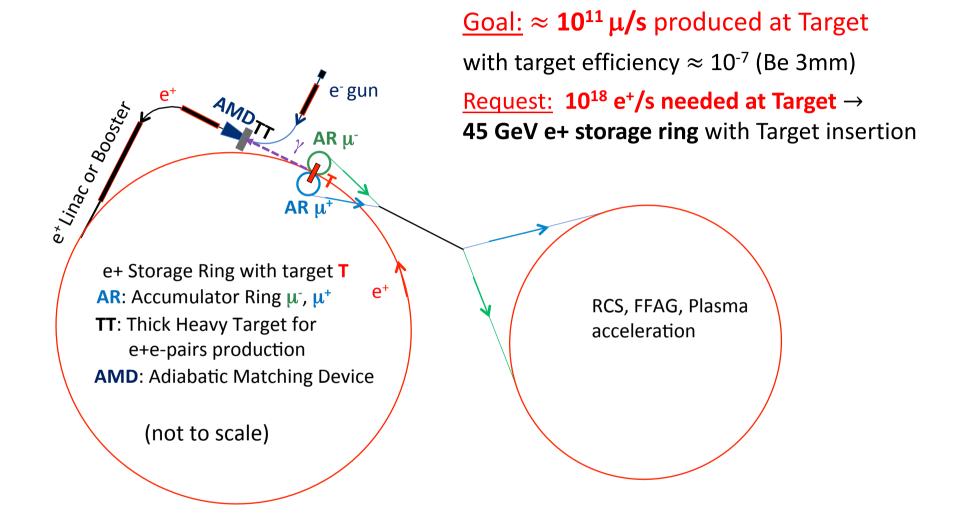
- First studies by B.J.King in Proc. EPAC98, p. 841-843 and Proc. 1999 PAC p. 319
- C. Johnson, G. Rolandi and M. Silari, TIS-RP/IR/98-34 (1998)
- J.D. Cossairt, N.L. Grossman and E.T. Marshall, Health Phys. 73 (1997), 894-898 (on neutrino dose equivalent/fluence)


MAP design for a 6 TeV MC

(500 m depth)


muon rate:

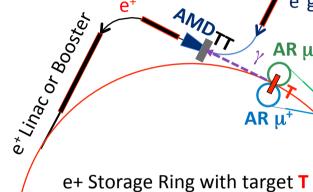
p on target option $3 \times 10^{13} \mu/s$ e⁺ on target option $9 \times 10^{10} \mu/s$


This plot is based on numbers reported in C. Jonhson et al adding Lemma, M.Antonelli

LEMMA scheme

LEMMA scheme

LEMMA scheme


e⁻ gun

e⁺

Goal: $\approx 10^{11} \,\mu/s$ produced at Target with target efficiency $\approx 10^{-7}$ (Be 3mm)

Request: 10¹⁸ e⁺/s needed at Target →

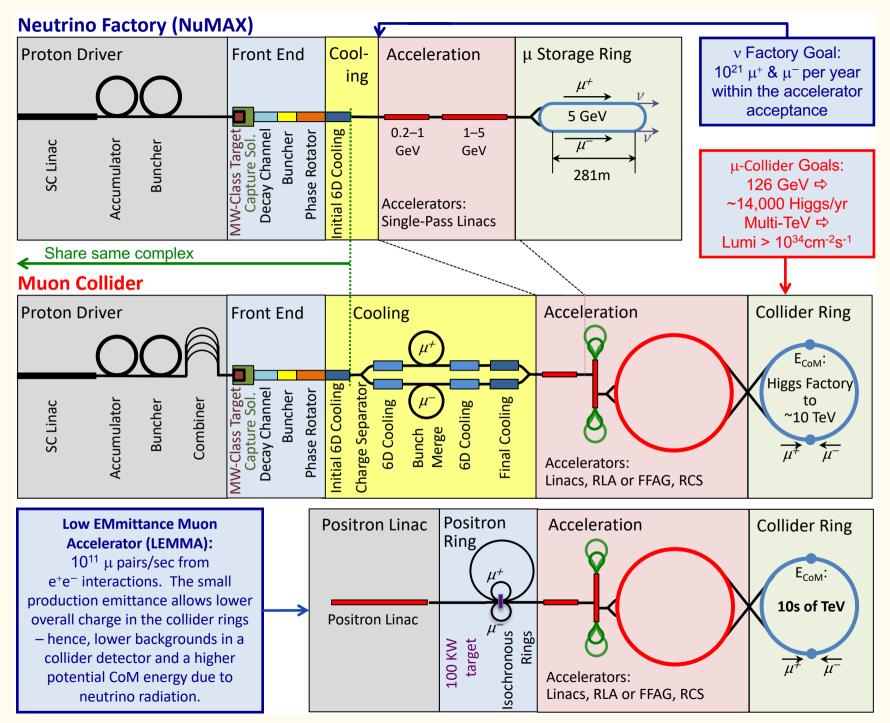
45 GeV e+ storage ring with Target insertion

AR: Accumulator Ring μ⁻, μ⁺

TT: Thick Heavy Target for e+e-pairs production

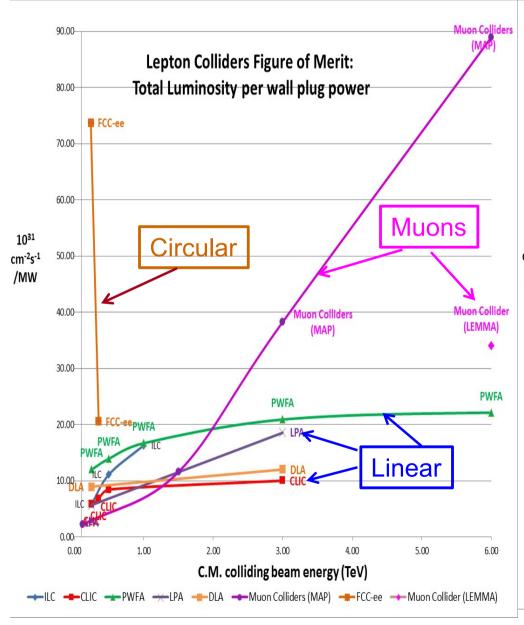
AMD: Adiabatic Matching Device

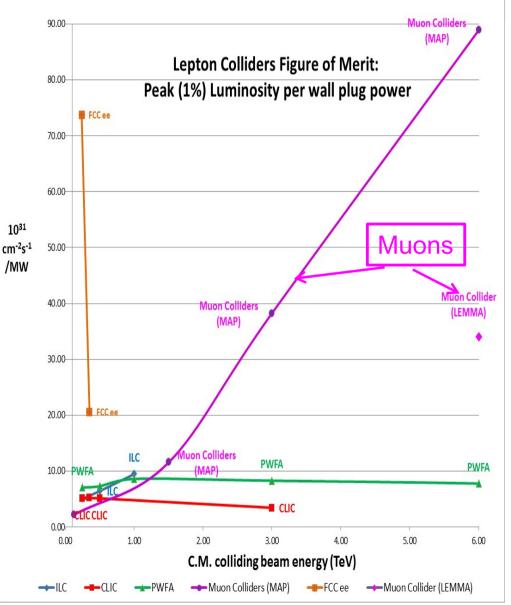
(not to scale)

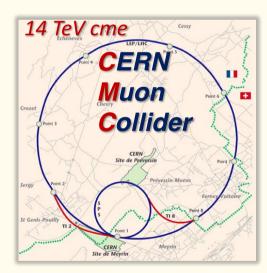

acceleration

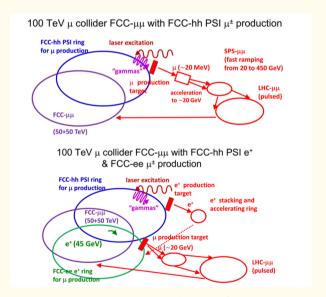
• μ^+/μ^- produced by the e^+ beam on target T at about **22 GeV** $\rightarrow \tau_{lab}(\mu) \approx 500 \mu s$ ($\gamma(\mu) \approx 200$)

RCS, FFAG, Plasma


- Accumulator Rings (AR) isochronous with high momentum acceptance, they recombine μ bunches for ~ 1 $\tau_{\mu}^{lab} \approx 2500$ turns
- fast acceleration and to collider


from $\mu^+ \mu^-$ production to collider


Figure of merit: Luminosity per wall plug power



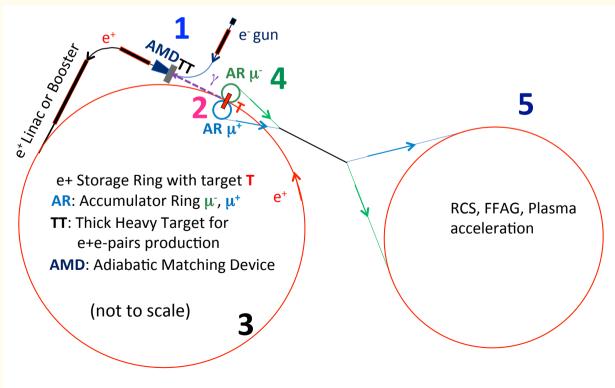
LEMMA concept and MC prospects

- The LEMMA concept renewed the interest and extended the reach of Multi-TeV Muon Colliders
- Two interesting recent proposals:
 - CERN Muon Collider @14 TeV [V. Shiltzev and D. Neuffer, MOPMF072, IPAC18]
 - LHC/FCC based MC [F. Zimmermann, MOPMF065, IPAC18]

MOPMF072, IPAC18, V. Shiltzev, D. Neuffer

MOPMF065, IPAC18, F. Zimmermann

 In view of the European Strategy Update an international WG has been established last September 2017 on MC, to prepare a document for the ESU on this subject

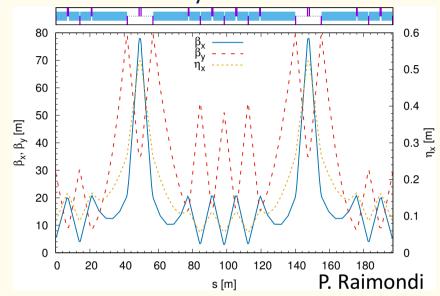

On going activity on the LEMMA proposal

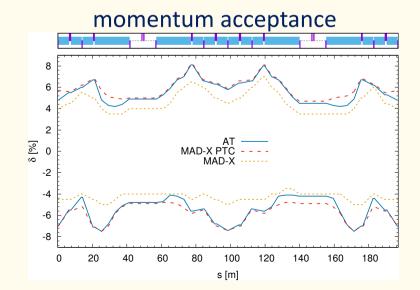
- Our goal is to define the potentiality of this concept for a multi-TeV MC:
 - in terms of luminosity and beam power
 - design the optics for the accelerator complex
 - identify and possibly start with the necessary key R&D
- Updates of our studies can be found in Refs.:
 - "The future prospects of muon colliders and neutrino factories", M. Boscolo, J.P.Delahaye and M. Palmer, ArXiv: 1808.01858, 6 August 2018
 - "Low emittance muon accelerator studies with production from positrons on target",
 Phys. Rev. Accel. and Beams 21, 061005 (June 2018)
 - "Muon accumulator ring requirements for a low emittance muon collider from positrons on target", M. Boscolo et al., in Proc. IPAC18, MOPMF087 (May 2018)
 - "Proposal of an experimental test at DAΦNE for the low emittance muon beam production from positrons on target", in Proc. IPAC18, MOPMF086 (May 2018)

Key steps of the study

- 1. High rate e+ source
- 2. $\mu^{+/-}$ production target (high peak energy density deposition (PEDD), power O(100 kW))
- 3. Positron ring (low ε and high momentum acceptance)
- 4. Muon Accumulator Rings (high momentum acceptance)
- 5. Fast acceleration
- 6. Muon Collider

All require R&D study and present challenges

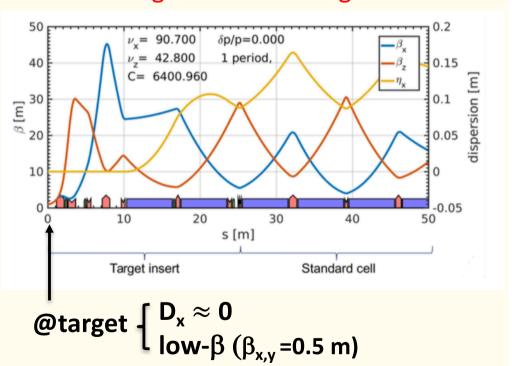



Optics design positron ring

e+ ring parameter	unit	MAP option	LHC tunnel
Energy	GeV	45	45
Circumference	km	6.3	27
No.part./bunch	#	3 · 10 ¹¹	
bunches	#	100	
e ⁺ bunch spacing = T _{rev} (AR)	ns	200	
Beam current	mA	240	
Emittance	nm	6	0.7
U_0	GeV	0.51	0.12
SR power	MW	120	29

S. Liuzzo, Padova workshop, 2-3 July 2018

Cell based on the Hybrid Multi Bend Achromat



Optics design positron ring

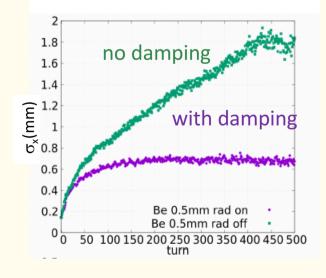
e+ ring parameter	unit MAP option		LHC tunnel	
Energy	GeV	45	45	
Circumference	km	6.3	27	
No.part./bunch	#	3 · 10 ¹¹		
bunches	#	100		
e ⁺ bunch spacing = T _{rev} (AR)	ns	200		
Beam current	mA	240		
Emittance	nm	6	0.7	
U_0	GeV	0.51	0.12	
SR power	MW	120	29	

Target Insertion Region

S. Liuzzo, Padova workshop, 2-3 July 2018

Multi-turn simulations

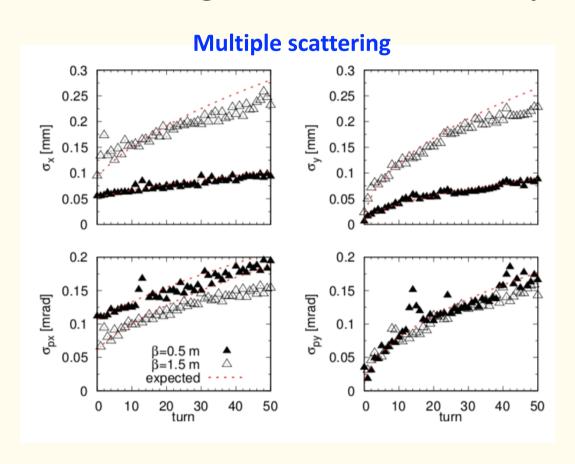
- 1. Initial 6D distribution from the equilibrium emittances
- 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. tracking through the target (with Geant4beamline and FLUKA and GEANT4)
- 4. back to tracking code

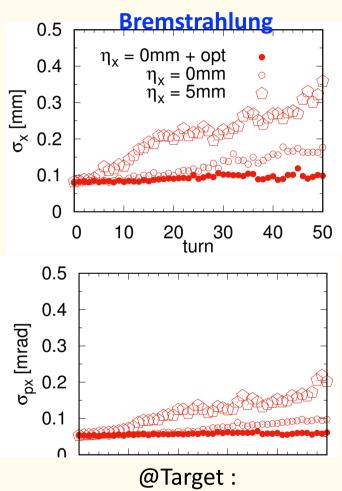

At each pass through the muon target the e+ beam

• gets an angular kick due to the **multiple Coulomb scattering**, so at each pass changes e⁺ beam divergence and size, resulting in an emittance increase.

undergoes bremsstrahlung energy loss: to minimize the beam degradation due

to this effect, D_x=0 at target


 in addition there is natural radiation damping (it prevents an indefinite beam growth)

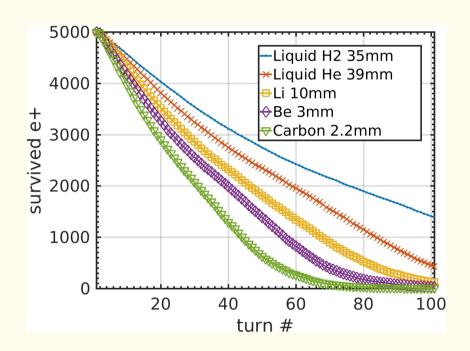

Beam dynamics e⁺ beam in ring-with-target

More details in: PR-AB 21, 061005 (2018)

e^+ emittance growth controlled with proper β and D values @ target

After 40 turns $\sigma'_{MS} = 25 \, \mu rad$

linear and non-linear terms of horizontal dispersion $\eta_x = 0$


Beam dynamics e⁺ beam in ring-with-target

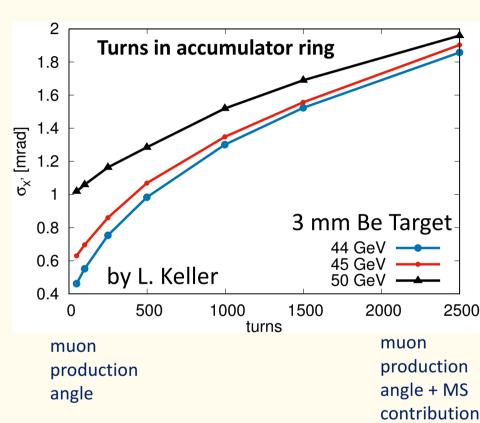
More details in: Arxiv. 1803.06696

Particle tracking with: MADX/ PTC/GEANT4/FLUKA & Accelerator Toolbox/G4-Beamline

Lifetime determined by bremsstrahlung and momentum acceptance 2-3% e+ losses in the first turn

Number of e+ vs turns for different target materials.

Target thickness gives constant muon yield.


Muon emittance contributions

 $\varepsilon(\mu) = \varepsilon(e^+) \oplus \varepsilon(MS) \oplus \varepsilon(rad) \oplus \varepsilon(prod) \oplus \varepsilon(AR)$

```
\epsilon(e^+) = e^+ \text{ emittance}
\epsilon(MS) = \text{multiple scattering contribution}
\epsilon(\text{rad}) = \text{energy loss (brem.) contribution}
\epsilon(\text{prod}) = \text{muon production contribution}
\epsilon(AR) = \text{accumulator ring contribution}
```

All these values need to be matched to minimize emittance growth due to beam filamentation.

 σ_x and $\sigma_{x'}$ and correlations of e⁺ and μ beams have to be similar

Proc. of IPAC18, Vancouver, MOPMF087

R&D for the muon production target

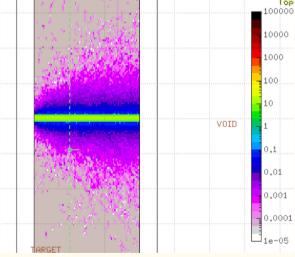
- This is the core topic of LEMMA feasibility.
- Thermo-mechanical stress is the main issue (very high Peak Energy Density Deposition)
- Engineering simulations and experimental tests will be required to find the optimal target material, considering mechanical stress and heat load resistance properties.
- We are considering now:
 - Beryllium seemed optimal from first MADX-/Geant-4 simulations
 - Carbon composites
 - Liquid Lithium
 - Hydrogen pellet
 - Crystals or more exotic targets

Target: thermo-mechanical stresses considerations

Beam size as small as possible (matching various emittance contributions), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise
 move target (for free with liquid jet) and
 e+ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise
 - Be, C

Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μ m, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot [Kavin Ammigan 6th High Power Targetry Workshop]


- Liquid target: better wrt power removal
 - Li, difficult to handle lighter materials, like H, He
 - LLi jets examples from neutron production, Tokamak divertor
 (200 kW beam power removal seems feasible), minimum beam size to be understood

Conventional options for μ target

- Aim at bunch ($3x10^{11}$ e⁺) transverse size on the 10 μ m scale: rescaled from test at HiRadMat ($5x10^{13}$ p on 100μ m) with Be-based targets and C-based (HL-LHC) [F. Maciariello *et al.*, IPAC2016]
- No bunch pileup ——— Fast rotating wheel (20000 rpm)
- Power removal by radiation cooling (see for instance PSI muon

beam upgrade project HiMB) [A. Knecht, NuFact17]]

- Need detailed simulation of thermo-mechanical stresses dynamics
 - Start using FLUKA + Ansys Autodyn (collaboration with CERN EN-STI)
- Experimental tests:
 - DAFNE available from 2020

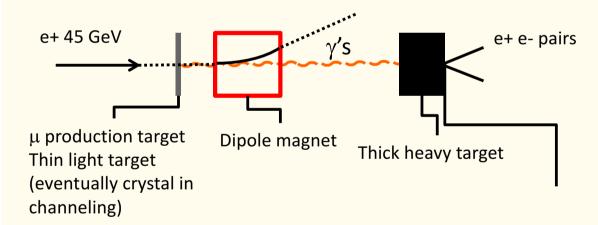
Alternative options like H pellet, crystals or more exotic targets are under consideration

R&D on high rate positron source

- R&D on this topic can take advantage of significant synergies with future collider studies as FCC-ee, ILC and CLIC.
- The required intensity for LEMMA is strongly related to the beam lifetime, determined by the momentum acceptance and the target material.
- So, also optics and beam dynamics optimization is necessary.

e⁺ production rates achieved (SLC) or needed

		S-KEKB	SLC	CLIC (3 TeV)	ILC (H)	FCC-ee (<i>Z</i>)	LEMMA(Be)	LEMMA(LH2)
1	$0^{14} e^{+} / s$	0.025	0.06	1.1	2	0.05	100	40


Present: 3 mm Be, 40 turns lifetime(DP/P<6%), Δ N/N=2.5%, P= 247 MW 35 mm LH2, 100 turns lifetime(DP/P<6%), Δ N/N=1%, P= 98 MW

Goal: 3 mm Be, 240 turns lifetime(DP/P<25%), , Δ N/N=0.4%, P=39 MW 35 mm LH2, 625 turns lifetime(DP/P<6%), Δ N/N=0.1%, P= 16 MW

R&D on high rate positron source

Embedded e+ source to relax e+ source requirement

Positron source extending the target complex Possibility to use the γ 's from the μ production target to produce e+

About 0.6 new e⁺ produced per e⁺ on thin target

Required collection efficiency feasible with standard design not yet found a system able to

transform the temporal structure of the produced positrons to one that is compatible with the requirement of a standard positron injection chain

R&D on Fast Acceleration for LEMMA

- Muon beams must be accelerated to high energy in a very short period of time to account for their short lifetime.
- Synchrotron radiation is not a limiting factor in accelerating muons at the TeV-scale, so multi-pass acceleration is preferred for cost considerations.
- LEMMA scheme utilizes a natural cycle time of 2.2 KHz and cannot be matched to the slower ramp rate of the MAP hybrid Rapid Cycling Synchrotron.
- For LEMMA two acceleration options to study are:
 - the Recirculating Linear Accelerator (RLA)
 - fixed-field alternating gradient (FFAG) machines with large energy acceptance
- Also accelerator technologies developed for the e+e- linear collider could be
 of benefit. Muon beams with low emittance and low current allow the use
 of novel acceleration technologies like X-band cavities

Muon collider at 6 TeV com energy

Values considered for this table:

- $\mu^+\mu^-$ rate = 0.9 10¹¹ Hz
- $\varepsilon_N = 40 \text{ nm}$ (as ultimate goal)
- 3 mm Beryllium target

Comparison with MAP:

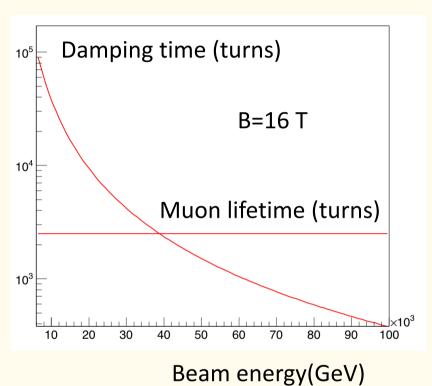
muon source	Rate μ/s	$arepsilon_{norm} \ \mu \mathbf{m}$
MAP	10 ¹³	25
LEMMA	0.9x10 ¹¹	0.04

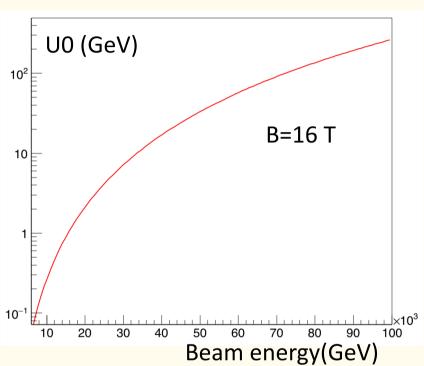
Same L thanks to lower β^* (nanobeam scheme)

no lattice for the muon collider yet

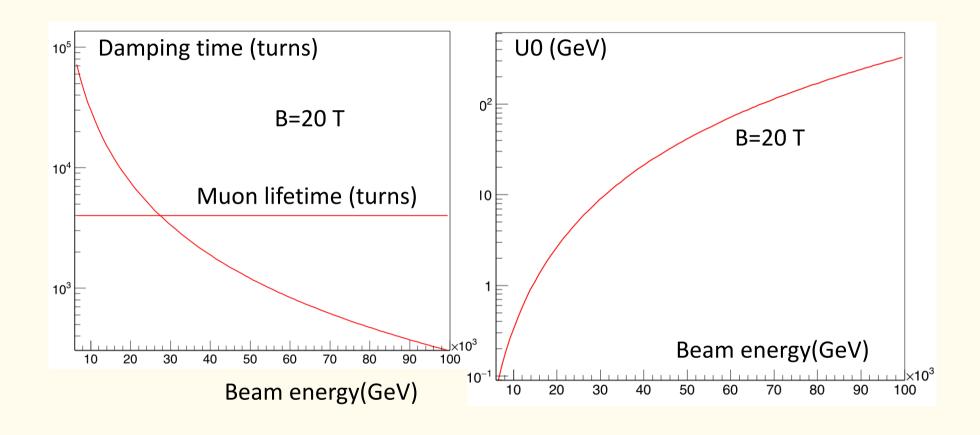
This table summarizes the goals of the LEMMA design study

Parameter	unit	LEMMA-6 TeV
Beam energy	Tev	3
Luminosity	cm ⁻² s ⁻¹	5.1x10 ³⁴
Circumference	km	6
Bending field	Т	15
N particles/bunch	#	6x10 ⁹
N bunches	#	1
Beam current	mA	0.048
Emittance x,y (geo)	m-rad	1.4x10 ⁻¹²
β _{x,y} @IP	mm	0.2
σ _{x,y} @IP	m	1.7x10 ⁻⁸
σ _{x′,y′} @IP	rad	8.4x10 ⁻⁵
Bunch length	mm	0.1
Turns before decay	#	3114
muon lifetime	ms	60

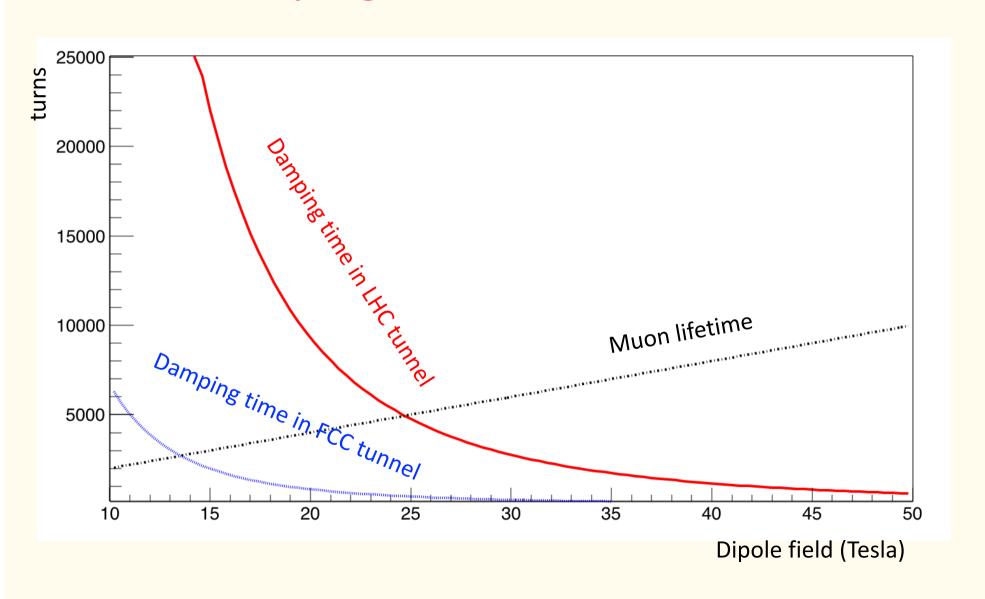

Comment on the parameters table


- Low Emittance: is the core of LEMMA idea, the greatest benefit of the positron driven source. The ultimate value has to be determined by R&D studies, we know that it will be given by the convolution of different contributions. Our goal is to reduce multiple scattering to a negligible value and have the best possible matching at target [with 3 mm Be target the multiple scattering contributes for a factor 15 in emittance increase]
- **Bunch intensity 6x10⁹**: a muon bunch charge of 4.5x10⁷ is provided by the AR, an enhancement by a factor 120 can be obtained by a combination scheme either in the longitudinal [D. Schulte] or in the transverse [P.Raimondi] plane. Feasibility needs to be studied, also to verify impact on emittance. Alternatively at very high energy use SR damping
- $\beta^*=0.2$ mm: aim is nano-beam scheme, final focus lattice not designed yet, permanent quads might be used.

Conclusion


- LEMMA is a novel concept for muon production, that renewed the interest and extended the reach of Multi-TeV Muon Colliders
- Key topics for the LEMMA feasibility validation:
 - Positron ring-with-target: low emittance and high momentum acceptance
 - Muon Accumulator Rings: compact, isochronous and high $(\Delta p/p)_{accept}$
 - Muon production target: extreme Peak Energy Density Deposition
 - High positron source rate
 - Fast acceleration
 - Final focus at MC
- Preliminary studies pioneered by the INFN-LNF group are promising,
 progresses require to continue the design study of the accelerator complex.
- Experimental tests at DAFNE&CERN-NA for validation of some fundamental topics LEMMA are fundamental opportunities.

SR and damping in μ collider



SR and damping in μ collider

Damping time & muon lifetime

Solid target

Rotating disc

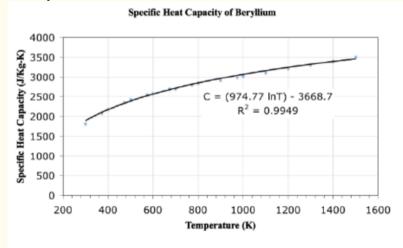
- **24000 turns/min**
- Radial velocity V= 2 π ω (in turns) r=250 m/s

Bunch spacing of $\Delta T = 200 \text{ns}$

- Bunch separation on target L = V Δ T = 50 μ m
- 12500 bunches in 1 turn

Cp = 0.97477InT-3.6687

 ω = 24000 turns/min

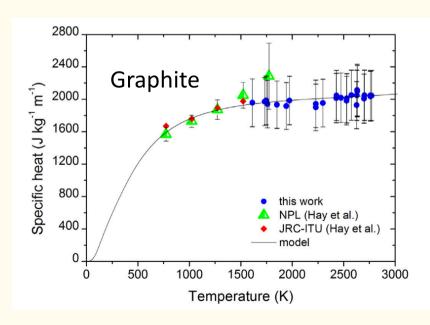

V= 250 m/s

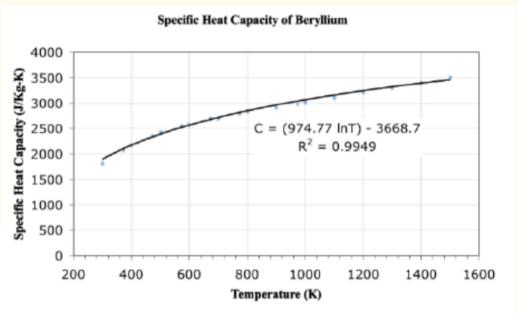
2D axisymmetric model showing effective total strain

4.9 x 10^{13} protons, $\sigma = 0.3$ mm, $\Delta T \sim 1025$ °C, 0.25 mm thick window

End of beam pulse $t = 7.2 \,\mu s$, $T_{max} \sim 1050 \,^{\circ} C$, $\varepsilon_{max} \sim 3.6 \,^{\circ} M$

- Use 300 μm round e+ beam, 0.25 mm Be target, 5 x 10¹³ e+/b
- dE/e+ = (2.0 MeV.cm 2/g)(1.85 g/cm 3)(0.025 cm) = 0.09 MeV/e +
- dE = $5 \times 10^{13} \times 0.09 \times 1.6 \times 10^{-13} \text{ j/MeV} = 0.74 \text{j}$
- $dV = pi (0.025 cm)(0.03 cm)**2 = 7 x 10^{-5} cm3$ $m = dV \rho = 0.00013 g$ Cp = spec. heat Be = 1.8 j/g°C @ 373 K ; C = Cp m = 0.00024
- dT = dE/C = 3083 °C
- Cp = spec. heat Be = $2.8 \text{ j/g}^{\circ}\text{C}$ @ 1000 K ; C = Cp m = 0.0005
- dT =dE/C = 2000 °C
- x2 wrt LS-DYNA?
- Scale for n= 3 x 10¹¹
- $(300\mu m)^2/200=(21\mu m)^2$




Solid target

• Use 5 μ m round e+ beam, 0.3 cm Be target, 3 x 10¹¹ e+/b

Cp = 0.97477InT-3.6687

Dq = Cp DV ρ dT Q = DV ρ [(0.97477 T(lnT-1) - 3.6687 T) - 0.97477 x 373(ln373-1) - 3.6687 x 373)]

