Pyroelectric undulator

A.V. Shchagin

Belgorod National Research University, Belgorod, 308015, Russia
Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
E-mail: shchagin@kipt.kharkov.ua

The research was supported by a program of the ministry of education and science of The Russian Federation for higher education establishments, project №14.578.21.0192 (RFMEFI57816X0192).

CHANNELING 2018
CHARGED & NEUTRAL PARTICLES CHANNELING PHENOMENA
Ischia - Italy, September 23 - 28, 2018
The idea of undulator was first proposed by V.L. Ginzburg in 1947. First realized by Mots.

The in further, mainly magnetic undulators were developed.

Magnetic undulator. Figure from Alferov et al, Physics Uspechi 157.3 (1989): 389-436.
But more recently pyroelectric sources of strong electric field appeared.
Scheme of the experimental setup with pyroelectric crystal LiNbO3 (3), Si(Li) X-ray detector (10), 1.0 mm lead collimator (5), 20 mkm Cu foil (8), 20 mkm Be foil (6). L=8mm.

Shchagin A.V., shchagin@kipt.kharkov.ua
Kharkov Institute of Physics and Technology
X-ray spectra at heating and cooling -20 – +110 degree. Crystal LiNbO3, height $H=8$ mm pressure $P=2.5$ mTorr

Shchagin A.V., shchagin@kipt.kharkov.ua

Kharkov Institute of Physics and Technology
Application of pyroelectric electric field for deflection of non-relativistic electric beam of 30 keV

Proof-of-principle experiment in Belgorod:
Deflection of 7 MeV electron beam

Recently submitted for publication in JINST, 2018

Pyroelectric deflector of relativistic electron beam
O. Ivashchuk, A. Shchagin, A. Kubankin, A. Oleinik, I. Kishchin
Two schemes of pyroelectric undulators
What is the pyroelectric parameter parameter α_γ?

Deflection angle in a single pyroelectric deflector

Let us estimate the deflection angle α of the particle moving through a single pyroelectric at conditions $\alpha << 1$, the path l of the particle in the transverse electric field is much less then the curvature radius $l << R$ and neglecting the edge effects. This situation is similar to the motion of the charged particle parallel to the plates inside of a capacitor. The deflection angle can be found from (1)

$$\alpha = \frac{l}{R} = \frac{lqE}{e\beta^2} = \frac{lqEmc^2}{e\beta^2mc^2} = \frac{lqE}{\beta^2mc^2}\gamma^{-1}.$$

Obtain the deflection angle in units γ^{-1}

$$\alpha\gamma = \frac{lqE}{\beta^2mc^2}.$$

In the ultra-relativistic case $\beta^2 \to 1$ and we obtain

$$\alpha\gamma = \frac{lqE}{mc^2} = \frac{1}{5 \cdot 10^5} \frac{V}{cm} = 0.2.$$

Note that the deflection angle in units γ^{-1} is independent of the energy of ultrarelativistic particle. For example, the deflection angle $\alpha = 0.2\gamma^{-1}$ at path 1 cm in the transverse electric field $E = 10^5 \frac{V}{cm}$.

• As a result, we obtain undulator parameter $\alpha\gamma = 0.2$
• for undulator with period 4 cm. This is clear dipole radiation.
• For instance, 7 MeV electron beam should provide radiation of frequency 3.3 GHz.
Polarization structure of dipole (undulator) radiation
Calculated by
Main feature of pyroelectric undulator

Small weight (< 1 kg)
Small attractive force (a few N only)
Absence of any outer high voltage source
The power supply is due just to cooling and heating of the pyroelectric undulator
Possibility for further miniaturization up to sub-millimeter period size.

Thanks for discussions of pyroelectric undulator to N. Bondarenko, S. Trofimentko, A. Kubankin, O. Ivashchuk.

Thanks for attention!
• Магнитные ондуляторы имеют значительную массу и большую силу притяжения между магнитными парами. Электрический ондулятор лишен таких недостатков, но требует питания от внешних источников высокого напряжения и высоковольтных вакуумных вводов. Мы предлагаем пироэлектрический ондулятор, в котором поперечное периодическое электрическое поле создается при нагреве или охлаждении пироэлектрических пар, установленных в вакууме. При этом внешнее высоковольтное питание не требуется. Недавно эксперименты по отклонению пучка с помощью пироэлектрического дефлектора, состоящего из одной пары пироэлектрических кристаллов, были выполнены на пучке нерелятивистских электронов с энергией 30 кэВ /1/ и на пучке релятивистских электронов с энергией 7 МэВ /2/. Легкий, компактный пироэлектрический ондулятор может быть собран из таких дефлекторов. Напряженность поперечного электрического поля в таком ондуляторе может быть порядка 100 кВ/см, а период порядка 1 см и менее. Питание такого ондулятора осуществляется путем изменения температуры пироэлектриков, которые установлены в вакууме. Обсуждаются свойства, достоинства и недостатки пироэлектрического ондулятора.

• [2]. О.О. Иващук, А.С. Кубанкин, А.В. Щагин, И.А. Кищин, А.Н. Олейник Пироэлектрический дефлектор пучка электронов с энергией 7 МэВ // доклад на настоящей конференции