

European Research Council

Silicon Undulator Prototype: manufacturing and X-ray Characterization

Riccardo Camattari

E. Bagli, L. Bandiera, D. Casotti, G. Cavoto, V. Guidi, A. Mazzolari, M. Romagnoni, A. Sytov

CHANNELING 2018

Thursday, 27 September - Hotel Continental Ischia

Outline

- Why a crystalline undulator?
- Manufacturing techniques
 - The sandblasting method
 - The grooving method
- Conclusions

Classic free electron lasers

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

Electron / positron source

 $\lambda lu \rightarrow Undulation period$ Current limit ~10 mm $\lambda lph = \lambda lu /2\gamma T_2 (1+KT_2/2)$

Riccardo Camattari

Crystalline undulators

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Charged

- Particle beam Crystals are capable of channel charged particles impinging at small angle wrt lattice planes (channeling).
- If the lattice planes are bent, the strong electric potential • induces channeled particles to follow the crystal curvature.
- A crystal periodically bent could induce a motion similar to • a conventional magnetic undulator, with lower $\lambda \downarrow u$.

Riccardo Camattari

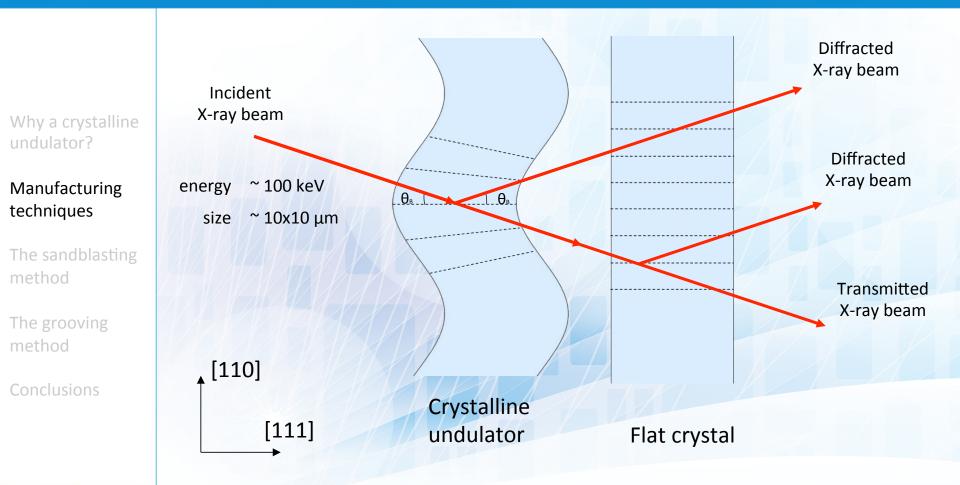
Manufacturing techniques

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method


Conclusions

- We decided to manufacture CU made of silicon, because it is a material with a high crystalline order, easy to work.
- Only mechanical techniques have been used, to study the possibilities of such methods. The deformation is selfstanding.
- If only mechanical means are used, no contaminating elements are deposited on the CUs.

Hard X-ray measurement

Measurements performed at ESRF and ILL (Grenoble, France)

Sandblasting method

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

- The sandb layer on the
- The amorphized layer behaves as a thin compressive film, causing the curvature of the substrate.

Width

• To obtain an undulated deformation, both faces must be patterned, with a phase shift of half a period.

Riccardo Camattari

Thickness

27/09/2018

ng an amorphized

Sandblasting method

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

	and and the first	
Method	Sandblasting	
Material	Silicon (111)	tt (/rua
Thickness	1.0 mm	
Length	8.0 mm	Angular shift (Jrrad) -50 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
Width	10.0 mm	
Period ($\lambda \downarrow u$)	2.0 mm	
Number of periods	4	
Amplitude	23 nm	Dosition
Analysed through at the DIGRA facilit Grenoble (France)		-20 -10 -20
amattari et al. J. Appl. Cryst. 50 (FOR SCIENCE	Length (mm)

Riccardo Camattari

Sandblasting method

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

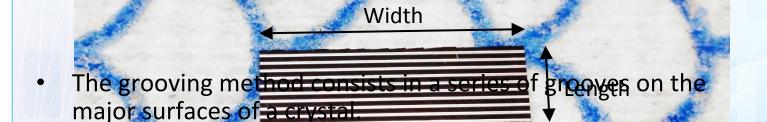
Conclusions

Advantages

- No Contaminants
- Adjustable
- Easy and economic
- Fast

Disadvantages

- Crystal damage
- The period $(\lambda \downarrow u)$ is limited to be not smaller than ~ 1 mm


Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

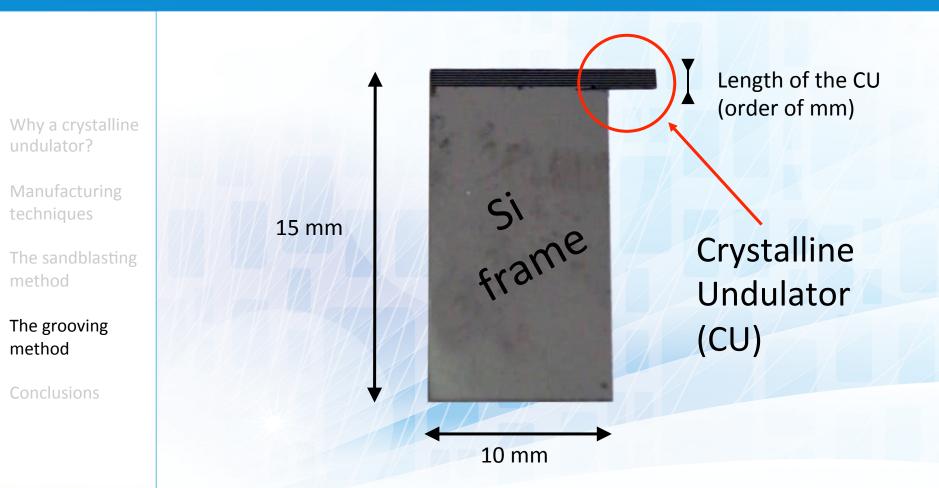
- It was shown that a series of grooves may cause a permanent and reproducible deformation of the whole sample.
- A crystalline undulator can be realized by making an alternate pattern of parallel grooves on both the surfaces of a crystal, with a phase shift of half a period.

Camattari et al Meccanica 48 (2013) 1875-1882

Riccardo Camattari

Why a crystalline undulator?

Bagli


Manufacturing techniques

The sandblasting method

The grooving method

		40
Method	Grooving	
Material	Silicon (111)	Angular shift (Jurad)
Thickness	0.2 mm	
Length	5.0 mm	
Width	45.0 mm	
Period ($\lambda \downarrow u$)	1.0 mm	
Number of periods	5	
Amplitude	4.1 nm	
Analysed through at the ID15 facility Grenoble (France)		$ \begin{array}{c c} \hline \\ \hline $
Bagli et al. Eur. Phys. J. C 74 (2014	Length (mm)	

Riccardo Camattari

Riccardo Camattari

Why	a crystallin	е
undu	lator?	

Manufacturing techniques

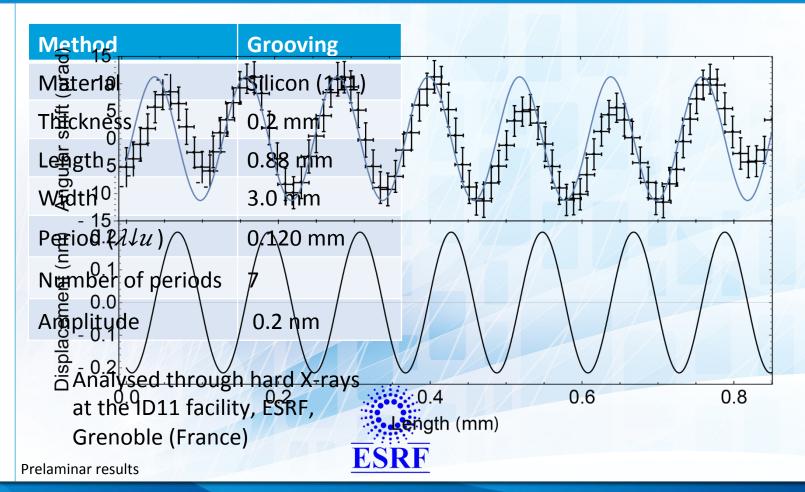
The sandblasting method

The grooving method

Conclusions

Method	Grooving					
Material	Silicon (111)					
Thickness	0.2 mm					
Length	3.34 mm					
Width	10.0 mm					
Period ($\lambda \downarrow u$)	0.334 mm					
Number of periods	10					
Amplitude	1.28 nm					
Angalysed through hard X-rays						
at the ID11 fatilit	ty, ESRP,	5 2.0 2.5 3.0				
Grenoble (France	e)	ngth (mm)				
Prelaminar results	ESE	<u>KF</u>				

Riccardo Camattari

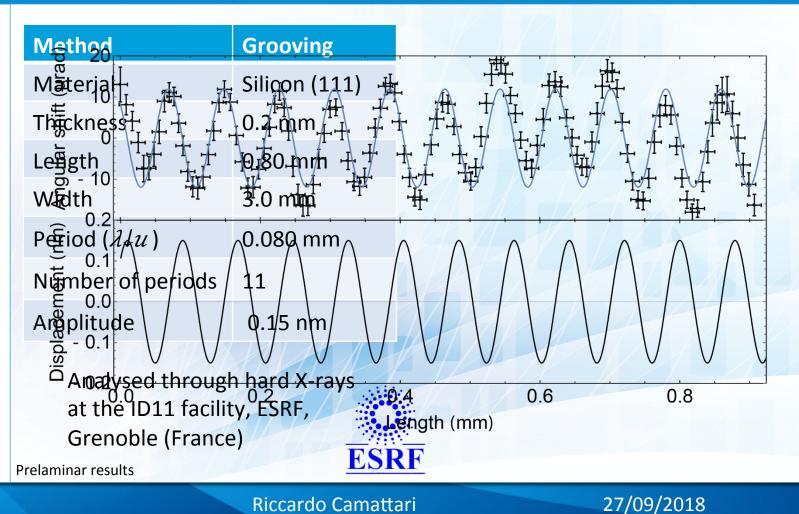

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions



Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Riccardo Camattari

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

Advantages

- No Contaminants
- Adjustable
- The period can be as small as the blade width

Disadvantages

Crystal damage

Method comparison

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

Sandblasting method		Grooving method	
No contaminants	1	No contaminants	1
Adjustable	1	Adjustable	1
Higher period	Ļ	Smaller period	1
Less crystal damage	1	More crystal damage	Ļ

Conclusions

Why a crystalline undulator?

Manufacturing techniques

The sandblasting method

The grooving method

Conclusions

- Self-standing undulated crystals have been realized.
 - It is possible to decrease the period, but it decreases also the undulating amplitude.
- The smallest period was obtained with the grooving method, namely 80 µm with 0.15 nm of amplitude.
- Test with charged particles are fundamental for evaluating the crystal damage.

27/09/2018

Riccardo Camattari

INFN Istituto Nazionale di Fisica Nuc

erc

Riccardo Camattari