Timing Resolution in Aligned PWO Crystal Scintillators

A. Lobko, V. Tikhomirov, V. Haurylavets, V. Mechinsky, A. Leukovich

Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus
alexander.lobko@cern.ch

8th Intl Conference CHANNELING 2018
23–28 September 2018, Ischia, Italy
MOTIVATION

Understanding and correct simulation of electromagnetic showers plays key role when developing HEP experiments. Enhanced radiation and pair production, induced by the crystalline structure of a detector medium, accelerate EM shower development when particle moves at a small angle with respect to crystal axes and comes from its coherent interaction with ordered atoms.
Our recent evaluation of the upper limit of crystal effects in the lead tungstate crystal of the CMS electromagnetic calorimeter showed that the peak of the electromagnetic shower shifts by 2-4 radiation lengths to the entry surface of the crystal [1].

The reduction of effective radiation length in aligned PWO crystal was experimentally observed at CERN SPS [2].

Such shower modification demands reconsidering of event reconstruction methods.

References
We present timing variations of the EM calorimeter signals from showers in “crystal” PWO for *paraxial* gamma-quanta, electrons and positrons in comparison with signals from showers in the “amorphous” PWO, i.e. when EM shower develops far from directions of main crystal axes and planes.
Test beam (2008)
- 2 crystals in the same EM shower: **20 ps constant term**

In-situ (Run1)
- 2 crystals in the same EM shower & same readout unit: **70 ps constant term**, degradation due to time calibration stability
- 2 crystals in different showers from $Z \rightarrow ee$: **150 ps constant term**, additional degradation from clock distribution
4D Triangulation with Photon Timing

- With two time and position measurements e.g. from two photons and with the constraint from the beam axis x and y location, the vertex x and t can be calculated analytically.
- Equivalent to GPS with two satellites.

Picture from A. Bornheim talk Precision Timing Detectors for Particle Physics
Several ingredients determine the time resolution of an electromagnetic shower in a homogeneous crystal calorimeter:

- Intrinsic EM shower fluctuations
 - longitudinal shower fluctuations
 - optical transit time spread: scintillation rise/decay time, light propagation
- Photodetector + electronics
 - photodetector: rise time, transit time
 - noise: dark current, electronic noise
- DAQ
 - clock distribution
Fast Timing Fundamentals

For good time resolution, need:

1. fast rise time (t_{rise}) \Rightarrow primary signal rise time (scintillation: LYSO \sim30 ps, Si sensors \sim1ns)

2. low Signal-to-Noise ($\Delta U/U$) \Rightarrow primary signal amplitude: LYSO \sim30k photons/MeV (1.07 MeV/mm MIP), Si sensors \sim30k e/h pairs in 300 μm for a MIP

3. more time samples ($n_{samples}$)

Picture from A. Bornheim talk Precision Timing Detectors for Particle Physics
Methodology

To estimate the PWO crystal structure influence on the energy deposition, the GEANT4 simulation of electromagnetic shower development in a structureless PWO standard sample routinely implemented in GEANT4 was used as a *benchmark*.

First, the characteristics of both pair production and gamma-quantum emission in the PWO crystal have been evaluated by the method developed earlier for various gamma-quantum and electron (positron) energies.

The obtained pair production probabilities and electron (positron) energy loss lengths, increased due to the influence of the PWO crystal structure, have been introduced into the GEANT4 simulations through the increase of the corresponding values for the *structureless* PWO.
GEANT4 simulation

CMS ECAL endcup crystal 30x30x220 mm wrapped with polished Al. Energy deposit + photon transport

Source point

Al $e^- e^+ \gamma$ PbWO$_4$ Glass

Supercomputer MARCONI CINECA, Italy https://www.cineca.it
\(\alpha = \frac{1}{\tau_{\text{rise}}} \), \(\tau_{\text{rise}} = \sim 4 \, \text{ps} \)

\(\beta = \frac{1}{\tau_{\text{decay}}} \), \(\tau_{\text{decay}} = \sim 10 \, \text{ns} \)
Energy deposition

200 GeV

dE/dt, GeV/psec vs. time, ns
Signal front shape at various energies

20 GeV

200 GeV

1000 GeV
Results with modified GEANT4 functions

Shower accelerated to approximately 4-5 radiation lengths, thus reducing rear leakage and constant term in the calorimeter energy resolution.
Signal rise time at various energies

$\frac{dI}{dt}$ at 20 GeV

$\frac{dI}{dt}$ at 200 GeV

$\frac{dI}{dt}$ at 1000 GeV
Readout using 2 SiPMs from the front face resolution dominated by longitudinal shower fluctuations (~80 ps constant term)

\[t_{\text{shower}} + t_{\text{light}} + t_{\text{cell}} \]

\[\Delta t \]

\[\text{shower fluctuations} \]

\[\text{APD} \]

\[\text{SiPM} \]

\[\text{50 \mu m cell - MP \- PC} \]

\[\sigma_t = A/\sqrt{E + C} \]

\[A = 191, C = 23 \text{ ps} \]

Energy [GeV]

Picture from P. Meridiani talk Precision timing calorimetry with the upgraded CMS ECAL
Conclusions

- **Results** of simulations of the electromagnetic shower development accelerated by the crystal-assisted processes in the PWO crystals manufactured for the ECAL CMS are reported;
- Obtained results *can be used as an experiment proposal*
- Obtained results *can be used* to refine the methods of a particle reconstruction by Compact Muon Solenoid at LHC (CERN);
- Obtained results *should be used* when performing detector study for Future Circular Colliders and other similar projects at energy frontier (Energy Dependent!);
- Obtained results *should be used* for development of dedicated patches at relevant particle tracking computer toolkits, like GEANT4 and others.
Thank you for attention