X-ray Tomography and 3D CFD Simulation of Fuel Mass Distribution in a GDI Spray

L. Marchitto, M. Costa, D. Piazzullo

Istituto Motori CNR, Italy

D. Hampai, S. Dabagov

INFN LNF, Italy

Istituto Motori National Research Council (Napoli) Italy

New Spark Ignition engines promise higher combustion efficiency and exhaust emission reduction

How to reduce fuel consumption and CO₂ emission?

Through stratified lean combustion (up to 25% less consumption)

Controlling the charge formation by mans of injection

How a high pressure spray works?

M. Linne, Imaging in the optically dense regions of a spray: a review of developing techniques, Progress in Energy and Combustion Science, 2013, 39: 403-440.

Sketch of the spray regions *

Several optical techniques have been applied for characterizing the fuel spray development and air-fuel interaction.

main jet geometric parameters: tip penetration, cone angle

measurements about the internal structure of the spray results quite complicated, especially in the dense region close the nozzle

Techniques based on X-radiation have been applied to estimate the fuel distribution into high-density regions of fuel sprays.

X-radiography of hollow-cone direct injection fuel spray

Computed fuel mass distribution by fitting the experimental data with mass reconstruction models

Wang, J., X-ray vision of fuel sprays, Journal of synchrotron radiation, 12: 197-207 (2005).

EXPERIMENTAL SET-UP 1/2

A Cu Kα X-ray source at ~ 8.0 keV
coupled with a polycapillary
halflens focuses the radiation on a
selected spray region .
A CCD detector for X-radiation
collects the emerging signal

A 6-hole GDI injector is coupled to the high pressure pump by a specially designed rotating device able to work up to 50 MPa with an angular step $\Delta \theta = 1^{\circ}$

EXPERIMENTAL SET-UP 2/2

Polycapillary Lens

POLYCAPILLARY SEMI-LENS	
beam diameter	~4 mm
residual divergence	1.4 mrad
channel mean diameter	~ 5 μm

The polycapillary lens total efficiency is about 60%, at selected energies.

Polycapillary cross-section

EXPERIMENTAL SET-UP 2/2

Polycapillary Lens

EXPERIMENTAL SET-UP 2/2

Polycapillary Lens

IMAGE ACQUISITION 1/2

Field of View

IMAGE ACQUISITION 2/2

The jets don't have any symmetry. The jet 4 has just a little inclination respect to nozzle axis and it is confined always in the beam spot.

3D RECONSTRUCTION

The absorption is linked to the sample local density ρ by the well known Lambert Beer law :

where μ_l is the linear absorption coefficient and *l* is the crossed spray length. The previous equation can also be written as:

$$I/I_0 = e^{-\mu_M M}$$

where μ_M is the mass absorption coefficient. Considering the single cross section, M represents the fuel mass m related to the spray cross section area A.

CROSS SECTION MEASUREMENTS

3D CFD CHARACTERIZATION OF THE SPRAY EVOLUTION

р_{іпі} = 10 МРа

p., = 6 MPa

0.0001

0.00012

3D CFD spray description through Discrete Droplet Method (DDM): solving the trajectory, momentum, heat and mass transfer ordinary differential equations of single droplets, each being a member of a group of identical non-interacting droplets termed a "parcel", tracked through a Lagrangian approach.

Numerical sub-models for spray description:

• the droplet-gas momentum exchange: Schiller - Neumann

0.5

Function - 70

0.1

0 Λ

- turbulent dispersion: O' Rourke
- evaporation of droplets: Dukowicz
- break-up: Huh Gosman
- droplet collision: Nordin

Initial size of droplets at the nozzle ability 0.3 exit section is considered variable Density Prob ²⁰ according to a probabilistic lognormal distribution*:

Expected value $D_{th} = \frac{2\pi\tau_f\lambda}{\rho_g u_{rel}^2}$

Variance σ

The choice of the distribution variance and the tuning of the Huh Gosman model **constant** is performed by means of an automatic optimization procedure* with respect to the experimental penetration length.

2E-005

4E-005

*M. Costa, L. Marchitto, S.S. Merola, U. Sorge, «Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging», Energy, 1-9, (2014)

6E-005

Initial Droplet Diameter (m)

8E-005

- **NSIZES:** Number of different particle sizes introduced per time step and ring;
- **NINTRO:** number of radial parcel release locations on each hole;
- **NCIRCD:** number of circular parcel • release locations on each ring.

3D CFD CHARACTERIZATION OF THE SPRAY EVOLUTION

Sensitivity Analysis to the number of parcels introduced per nozzle hole per time step

Charged & Neutral Particles Channeling Phenomena - Channeling 2018

3D CFD SIMULATION OF THE HOLE N° 4 SPRAY EVOLUTION

3D CFD simulation of the injection process of the only n° 4 nozzle hole

Cubic numerical grid: 1x1x10 mm

Computational cell dimensions: 20 μm

Comparison between the measured and computed **liquid concentration** in a plane orthogonal to the n° 4 hole axis, at a distance from the nozzle tip equal to 250 µm and 500 µm

Operative Conditions		
Injection Pressure [MPa]	5 - 10	
Fuel Temperature [K]	293	
Vessel Pressure [Pa]	101325	
Vessel Temperature [K]	298	
Fuel Mass Injected [mg]	4,36	
DOI [ms]	3,13	
Hole Diameter [mm]	0,14	

3D CFD SIMULATION OF THE HOLE N° 4 SPRAY EVOLUTION

3D CFD simulation of the injection process of the only n° 4 nozzle hole

Cubic numerical grid: 1x1x10 mm

Computational cell dimensions: 20 μm

Comparison between the measured and computed **liquid** concentration in a plane orthogonal to the n° 4 hole axis, at a distance from the nozzle tip equal to $250 \ \mu m$ and $500 \ \mu m$

Operative Conditions		
Injection Pressure [MPa]	5 - 10	
Fuel Temperature [K]	293	
Vessel Pressure [Pa]	101325	
Vessel Temperature [K]	298	
Fuel Mass Injected [mg]	4,36	
DOI [ms]	3,13	
Hole Diameter [mm]	0,14	

3D CFD SIMULATION OF THE HOLE N° 4 SPRAY EVOLUTION

EXP./NUM. RESULTS COMPARISON

Mass Fraction m_{air}/m_{fuel}

EXP./NUM. RESULTS COMPARISON

Mass Fraction m_{air}/m_{fuel}

CONCLUSION

X-ray tomography has been applied to investigate the inner structure of a gasoline spray delivered by a 6-hole Gasoline Direct Injection system. The experimental set-up is based on a Cu Kα X-ray tube coupled with a polycapillary halflens, that allowed to obtain a high intensity quasi parallel beam (lens total efficiency ~60%).

The technique has provided a detailed reconstruction of the spray structure in the region close to the nozzle allowing quantitative 3D measurements of fuel mass and local air-fuel distribution

A 3D CFD model in the AVL FireTM environment, based on a Reynolds Averaged Navier-Stokes (RANS) approach was developed to reproduce the operative conditions.

The comparison demonstrates the accuracy of x-ray tomography desktop facility as a reliable diagnostic tool to get quantitative information about the local mass distribution and fuel flow.

THANK YOU FOR YOUR ATTENTION

