

Channeling 2018 @ Ischia

Fr 28, Sept. 15:00-15:15

Novel Responses of Solids by Terahertz Free Electron Laser

A. Irizawa

Osaka University, Japan

What happening on solids irradiation by <u>low energy, intense, laser</u> ? (= THz-FIR FEL)

- "low energy" far infrared < UV, x-ray :photon energy
- "intense"

large number of photons :total energy

"laser"

monochromatic coherent light :electromagnetic wave

THz-FIR region

THz-FIR region is said to be a frontier in various fields: medical, sensing, engineering, chemistry, ...

FIR-THz region

FIR light, THz wave correlates with

organic materials, molecules: rotational, vibrational absorption ("fingerprint region"), inorganic materials: magnon, phonon, electronic excitation near E_F

Advantages of THz-FEL

Excitations

off-axis parabolic mirror

High brilliance achieves luminescence phenomena.

Just a thermal effect?

Melting or ablation

Different materials feel different "temperatures."

ISIR THz-FEL system

Obtained THz-FEL time structure

FEL pulse structure reflects the e-beam structure.

Generated THz FEL

Wavelengths for different undulator gaps

Beam profile & intensity

Simple Gauss-like dispersion with nearly parallel

Condensable less than 200 μm

+

Max energy $\sim 5 \; [mJ] \; / \; macro \; pulse$

35 [GW/cm²] (power density)

3.6 [MV/cm] (electric field)

Damage on Si

~ € 40,000 Rent for demonstration

LIPSS

Lase Induced Periodic Surface Structure (1965-)

Using fs-laser ($\lambda = 800$ nm)

Not just a thermal effect

electric field

from A. Borowiec and H. K. Haugen Appl. Phys. Lett., Vol. 82, No. 25, 23 June $^{2003}_{LIPSS}$ period $\Delta = 0.4 \lambda \sim \lambda$

Fine structure beyond the diffraction limit

Mechanisms

- Parametric decay of laser light to surface plasma waves (E_{gap} < E_{photon})
- Surface plasmon polariton excitation (E_{gap} > E_{photon})
- Higher harmonic wave

Interference between incident light and surface wave

These mechanisms can generate fine structures with $\Delta = 0.4\lambda \sim \lambda$

In case of THz-FEL, $\Delta \sim 0.04\lambda$. \rightarrow Contradict these models.

LIPSS by THz-FEL

Systematically shooting with different <u>wavelength</u>, different <u>shot number</u>, and different <u>fluence</u>.

Change for fluence, wavelength

LIPPS period.

Increase shot number

λ=82 um

Change for pulse number

Power law

Power law for pulse number

In different wavelength, different fluence.

In other works (fs-laser)

Si, Ti, alloy NIR Power law in other materials, other wavelength

Scaling law indicates <u>universal mechanism</u> of LIPSS ?

Periodic structures in nature

non-equilibrium open system

Self-organized dissipative structures

Dissipative structures in non-equilibrium open system

Self-organized criticality (scaling law)

Origin of LIPSS

Irizawa et al., Appl. Phys. Lett. **111**, 251602 (2017)

Burn.

incoherent (time, space)

like many photons.

coherent (time, space)

Intense wave.

Nonthermal.

Many thanks

 Samples & Discussion: Takeshi Nagashima (Setsunan Univ.) Atsushi Higashiya (Setsunan Univ.) Kazuyuki Sakamoto (Chiba Univ.) Shin-ichi Kimura (Osaka Univ.) Shigemasa Suga (Osaka Univ.) Nobuya Mori (Osaka Univ.)

• Experimental setup: Masaya Nagai (Osaka Univ.)

and ISIR THz FEL group: K. Kawase , M. Fujimoto, R. Kato, G. Isoyama, S. Funakoshi, R. Tsutsumi, M. Yaguchi...

Thank you for your attention.

Center vs Periphery

λ =82 um, 10 shots

Difference of periodicity between center and periphery.

Beam profile

knife-edge scanning

Intensity distribution by knife-edge scanning

x-scanning transmittance (on focus)

Derivative transmittance (Gauss fit)

Power density & electric field

Most of the power (95.5 %) is in 2σ radius. P(2σ) [W] = P(∞) [W] * 0.955

Estimated Gaussian radius: $2\sigma = 0.65*10^{-2} \text{ cm} = 65 \ \mu\text{m} (\lambda = 70 \ \mu\text{m})$ (radius: 2σ , standard deviation: σ)

On focus power density and electric field can be estimated from 2σ and input energy.

• Max energy ~5 [mJ] / macro pulse

⇔ 5 [mJ] / 108 pulses / 20 [ps] = <u>2.32 [MW]</u> ⇒ 35 [GW/cm²] (power density)

 \Leftrightarrow 35 [GW/cm²] * 377 [Ω] = 13.2 * 10¹² [V²/cm²] \Rightarrow 3.6 [MV/cm] (electric field)

Multiphoton excitation

 $Gap_{Si} = 1.1 \text{ eV} \sim 10 \text{ meV} * 100$

Improvements of electron beam system

27 MHz grid pulser installed in e-gun

CW e-beams is separated by 27 MHz. The bunch number is reduced by a quarter (27 MHz = 108 MHz / 4).

Pulse structures of THz-FEL

Undulator

Gap and wavelength relation

Wavelength of emitted light

 $\lambda \downarrow s = \lambda \downarrow u / 2 \gamma \uparrow 2 (1 + K \downarrow 0 \uparrow 2 / 2)$

Once Lorentz factor Υ can be derived from an observed wavelength at a certain gap, required gap size for an expected wavelength can be

 $K \downarrow 0 = e/2\pi mc B \downarrow 0 \lambda \downarrow u = 93.37 B \downarrow 0 (g) \lambda \downarrow a$ stimated using this correlation function.

Center of FEL wavelength can be chased by controlling gap size.

Simulation and measured water vapor absorptions