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For the bunch with the Gaussian 
distribution  

- plasma frequency,  
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Formulation of the problem 

Strongly magnetized  plasma: 
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  The gyration parameter is neglected.  

The bunch is characterized by a distribution along the - axis and a negligible 
thickness. The charge density is       

,
00

010
001

1̂
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

zε
ε

Plasma Vacuum 
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The “forced” field (called by V.L. Ginzburg [*]) is the field of the 
bunch in a regular waveguide. It can contain Cherenkov radiation 
(CR)  if the condition      is fulfilled.  

* V.L. Ginzburg and V.N. Tsytovich, “Transition Radiation and 
Transition Scattering”, Hilger, London, p. 445 (1990). 
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The “free” field is connected with the influence of the boundary. It 
includes transition radiation (TR) and can includes Cherenkov 
Transition Radiation (CTR) under certain conditions.  

Formulation of the problem 
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Methods of analysis 

We investigate the exact solution with analytical and computational 
methods. 
The analytical investigation is based on the complex variable function 
theory.  
Computations are based on an algorithm using certain transformation 
of the initial integration path. Such approaches were applied as well 
in some papers concerning both boundless homogenous media and 
problems with interface between two media 
A.V. Tyukhtin and S.N. Galyamin Phys. Rev. E 77 (2008) 066606,  
S.N. Galyamin.and A.V. Tyukhtin  Phys. Rev. B 81 (2010) 35134 
including the case of the waveguide partially filled with an isotropic 
cold plasma  
T.Yu. Alekhina and A.V. Tyukhtin, Phys. Rev. E 83 (2011) 066401. 

Note that CR is not generated in an isotropic cold plasma as 
opposed to the case considered here.  



The frequencies of  the radiated waves is always less than the plasma 
frequency. 

The forced field in the plasma has two parts: 
 a quasi-Coulomb field and CR -         : 
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CR in the strongly magnetized plasma                       
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The amplitude and the frequency of the first mode of CR:  
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CR in the LHM                       
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CTR in vacuum and in the plasma 

The branch points of the radical     : 

Vacuum: analysis of      in a complex 
plane of 
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For n = 1 
If                           
then 
          (in centimeters).  
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CTR in vacuum and in the plasma 

The condition for the single mode CTR 
in vacuum 

If                        , then the CTR with the number n exist in some 
domain in the vacuum area at the condition  

pn ωω <

The number of propagating modes (which compose 
the CTR) is always finite.  
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CTR in vacuum and in the plasma 
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The CTR in vacuum exists in some domain                . 
 
The front of the CTR propagates in vacuum with the group velocity:  

,2fzz <

nΨ=cVg

Plasma Vacuum 

222

22

2 1
1

n

n
f y

yctz
ββ

β
−−
−−

=

( ) ,1
4

2
0

2

βxx
βA

pn

CR
n −

=



12 12 

The first modes of the CR and CTR 
amplitude 

The CTR is effective for generation of radiation from 
nonrelativistic bunches. 

CTR in vacuum and in the plasma 
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Single mode condition: 
 
at       (in centimeters)  
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Numerical approach: 
Integrands        decrease in the I 
and II quadrants of a complex 
plane      at              and in the  III 
and IV quadrants – at      
Transformation of the initial 
contour is in an upper half-plane  
into a green contour before “wave 
front” and in a lower half-plane 
into a red contour behind “wave 
front”.  
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CTR in vacuum and in the plasma 
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r/a = 0.5, 
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Dependence of the first mode of the field       on z/a at different time 
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5.0=β

1 – the total field, 2 – the CTR, 
3- the forced field 
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Dependence of the first mode of the field       on z/a at different time 
moments ct/a. 
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Dependence of the first mode of the field       on z/a at different time 
moments ct/a. 
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Dependence of the first mode of the field       on z/a at different time 
moments ct/a. 
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Conclusion 

•  The CTR can be the main part of the wave field in some 
domain in the vacuum area of the waveguide under 
certain conditions. 

•  The CTR mode amplitude in vacuum may exceed the CR 
mode amplitude in the plasma.  

•  The CTR mode frequency is always less than the plasma 
frequency.  

•  The CTR is effective for generation of radiation from 
nonrelativistic bunches. 

•  The CTR effect can be used for the generation of single-
mode monochromatic radiation. 
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Thanks for your attention! 


