

Saint Petersburg State University

Department

Laboratory of Electrodynamics of Nonstationary and Microwave Processes

Cherenkov-Transition Radiation in a Waveguide with a Semibounded Strongly Magnetized Plasma

Tatiana Alekhina and Andrey Tyukhtin

Work is supported by Russian Foundation for Basic Research (RFBR), grant No. 17-52-04107.

CONTENTS

- Formulation of the problem
- Methods of analysis
- Cherenkov Radiation in a Strongly Magnetized Plasma
- Cherenkov Transition Radiation (CTR) in vacuum and in the Plasma

• Conclusion

Ya. B. Fainberg, Sov. Phys. Usp., 10 (1968) 750–758. A.N. Kondratenko, Plasma waveguides, (Moscow: Atomizdat, 1976). V. A. Balakirev, I. N. Onishchenko, D.Y. Sidorenko, and G.V. Sotnikov, Applied Radio Electronics, 4 (2005) 116–119. Yi. Longqing, A. Pukhov, P. Luu-Thanh, B. Shen, Phys. Rev. Lett. 116 (2016) 115001.

S.N. Galyamin and A.V. Tyukhtin, Phys. Rev. E, 84 (2011) 056608.

T.Yu. Alekhina, A.V. Tyukhtin, and A.A. Grigoreva, Phys. Rev. ST-AB, 18 (2015) 091302.

T.Yu. Alekhina and A.V. Tyukhtin, Phys. Rev. E, 83 (2011) 066401.

Formulation of the problem

Strongly magnetized plasma:

For the bunch

distribution

$$\hat{\varepsilon}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \varepsilon_{z} \end{pmatrix}, \qquad \varepsilon_{z} = \varepsilon_{z}(\omega) = 1 - \frac{\omega_{p}^{2}}{\omega^{2} + 2i\omega\omega_{d}},$$

$$\omega_{p} = \sqrt{\frac{4\pi n_{e}e^{2}}{m_{e}}} - \text{plasma frequency}, \qquad \omega_{d} - \text{losses}, \qquad \omega_{d} \to +0$$
The gyration parameter is neglected.

The bunch is characterized by a distribution along the - axis and a negligible thickness. The charge density is $\rho = q \delta(r) \eta(\zeta)/(2\pi r), \qquad \int \eta(\zeta) d\zeta = 1, \qquad \zeta = z - ct\beta.$

$$\rho = q \,\delta(r) \,\eta(\zeta)/(2\pi r), \qquad \int \eta(\zeta) d\zeta = 1, \qquad \zeta = z - ct\beta.$$

ch with the Gaussian
$$^{-\infty} \eta(\varsigma) = \exp\left(-\zeta^2/(2\sigma^2)\right)/(2\sigma^2)$$

(1)

Formulation of the problem

$$\vec{H}_{1,2} = \vec{H}_{1,2}^{q} + \vec{H}_{1,2}^{b}$$
⁽²⁾

The "forced" field (called by V.L. Ginzburg [*]) is the field of the bunch in a regular waveguide. It can contain Cherenkov radiation (CR) if the condition $n_{1,2}^2(\omega)\beta^2 > 1$ is fulfilled.

$$H_{\varphi 1,2}^{q} = \frac{2q}{\pi c a^{3}} \sum_{n=1}^{\infty} \frac{\chi_{n} J_{1}(\chi_{n} r/a)}{J_{1}^{2}(\chi_{n})} \int_{-\infty}^{+\infty} d\omega \frac{\tilde{\eta}(\omega) \exp[i\zeta/c\beta]}{k_{z1,2}^{2} - \omega^{2}(\beta^{2}c^{2})^{-1}} h_{\varphi 1,2}^{q}, \quad (3)$$

$$h_{\varphi 1}^{q} = (\varepsilon_{z})^{-1}, \quad h_{\varphi 2}^{q} = 1, \quad k_{z1} = \frac{\omega}{c} \sqrt{\frac{\omega^{2} - \omega_{n}^{2} - \omega_{p}^{2}}{\omega^{2} - \omega_{p}^{2}}}, \quad k_{z2} = \frac{\sqrt{\omega^{2} - \omega_{n}^{2}}}{c}$$

$$\tilde{\eta}(\omega) = \exp\left(-\frac{\omega^{2}\sigma^{2}}{2\beta^{2}c^{2}}\right) \quad \text{for the bunch with the Gaussian distribution}$$

$$\omega_{n} = \frac{\chi_{n}c}{a}, \quad \chi_{n} \text{ is the } n^{\text{th}} \text{ zero of the Bessel function} \quad (J_{0}(\chi_{n}) = 0)$$

* V.L. Ginzburg and V.N. Tsytovich, "Transition Radiation and Transition Scattering", Hilger, London, p. 445 (1990).

Formulation of the problem

The "free" field is connected with the influence of the boundary. It includes transition radiation (TR) and can includes Cherenkov Transition Radiation (CTR) under certain conditions.

$$H_{\varphi 1,2}^{b} = \frac{2q\beta}{\pi a^{3}} \sum_{n=1}^{\infty} \frac{\chi_{n} J_{1}(\chi_{n} r/a)}{J_{1}^{2}(\chi_{n})} \int_{-\infty}^{+\infty} B_{n1,2} \widetilde{\eta} (\omega) \exp[i(k_{z1,2}|z|-\omega t)] d\omega, \qquad (4)$$

$$B_{n1} = \frac{1}{k_{z1} + k_{z2}} \left[(c\beta k_{z2} + \omega)^{-1} + \frac{(\omega - c\beta k_{z2})}{\varepsilon_{z} (c^{2}\beta^{2} k_{z1}^{2} - \omega^{2})} \right]$$

$$B_{n2} = \frac{1}{\varepsilon_{z} (k_{z1} + k_{z2})} \left[(c\beta k_{z1} - \omega)^{-1} - \frac{(\omega \varepsilon_{z} - c\beta k_{z1})}{(c^{2}\beta^{2} k_{z2}^{2} - \omega^{2})} \right]$$

$$k_{z1} = \frac{\omega}{c} \sqrt{\frac{\omega^{2} - \omega_{n}^{2} - \omega_{p}^{2}}{\omega^{2} - \omega_{p}^{2}}}, \qquad k_{z2} = \frac{\sqrt{\omega^{2} - \omega_{n}^{2}}}{c} \qquad (\mathrm{Im} k_{z1,2} > 0) \qquad (5)$$

$$\widetilde{\eta} (\omega) = \exp\left(-\frac{\omega^{2}\sigma^{2}}{2\beta^{2}c^{2}}\right) - \text{ for the bunch with the Gaussian distribution}$$

Methods of analysis

- We investigate the exact solution with analytical and computational methods.
- <u>The analytical investigation</u> is based on the complex variable function theory.
- <u>Computations</u> are based on an algorithm using certain transformation of the initial integration path. Such approaches were applied as well in some papers concerning both boundless homogenous media and problems with interface between two media
- *A.V. Tyukhtin and S.N. Galyamin Phys. Rev. E 77 (2008) 066606, S.N. Galyamin.and A.V. Tyukhtin Phys. Rev. B 81 (2010) 35134* including the case of the waveguide partially filled with an isotropic cold plasma
- T.Yu. Alekhina and A.V. Tyukhtin, Phys. Rev. E 83 (2011) 066401.
- Note that CR is not generated in an isotropic cold plasma as opposed to the case considered here.

CR in the strongly magnetized plasma

The forced field in the plasma has two parts: a quasi-Coulomb field and CR - $H_{\varphi 1}^{CR}$:

$$H_{\varphi_1}^{CR} = \frac{q}{a^2} \sum_{n=1}^{\infty} \frac{\chi_n J_1(\chi_n r/a) \eta(\omega_{0n})}{J_1^2(\chi_n)} A_n^{CR} Sin\left[\omega_{0n}\left(\frac{z}{c\beta} - t\right)\right] \theta(\beta ct - z), \tag{6}$$

where $\theta(x)$ is the Heaviside step function,

The frequencies of the radiated waves is always less than the plasma frequency. $\omega_{0n} < \omega_p$

CR is generated if the velocity of the bunch motion is under condition

$$\beta < \beta_{1n} = \left(1 + y_n^2\right)^{-1/2},\tag{9}$$

$$y_n = \omega_n / \omega_p = \chi_n / x_p, \quad x_p = \omega_p a / c,$$

 $\chi_n \text{ is the } n^{\text{th}} \text{ zero of the Bessel function} \quad (J_0(\chi_n) = 0)$
7

CR in the strongly magnetized plasma

The amplitude and the frequency of the first mode of CR:

If $\beta <<1$, then $x_{0n} = 1 - \frac{1}{2} y_n^2 \beta^2 + O(\beta^4)$ $A_n^{CR} = 4\beta^2 x_p^{-1} [1 + O(\beta^2)]$ $x_{0n} = \omega_{0n} / \omega_p$ If $\beta \approx \beta_{0n} - \delta^2$, then $x_{0n} = \delta \left[1 + \frac{\left(1 + y_n^2\right)}{y_n} \right] \left[1 + O(\delta^2) \right]$ $A_n^{CR} = \frac{4}{\delta y_n x_p \left(1 + y_n^2\right)} \left[1 + O(\delta^2) \right]$

The condition for the single mode CTR in vacuum $y_n = \omega_n / \omega_p = \chi_n / x_p$,

The number of propagating modes (which compose the CTR) is always finite.

If $\omega_n < \omega_p \ (y_n < 1)$, then the CTR with the number *n* exist in some domain in the vacuum area at the condition $\beta < \beta_{1n} = \sqrt{1 - y_n^2}$.

reflection of CR off the

10

boundary.

 $\beta_{1n} < \beta_{0n} = 1/\sqrt{1 + y_n^2}, \quad x_p = a\omega_p/c$

$$H_{\varphi 1,2}^{\text{CTR}} = \frac{q}{a^2} \sum_{n=1}^{\infty} \frac{\chi_n J_1(\chi_n r/a)}{J_1^2(\chi_n)} \eta(\omega_{0n}) I_{n1,2}^{\text{CTR}}$$
(12)
$$I_{n1}^{\text{CTR}} = A_{n1}^{\text{CTR}} \sin \left[\omega_{0n} \left(z \beta^{-1} c^{-1} + t \right) \right] \theta(z_{f1} - z)$$

$$I_{n2}^{\text{CTR}} = A_{n2}^{\text{CTR}} \sin \left[\omega_{0n} \left(\Psi_n z c^{-1} - t \right) \right] \theta(z_{f2} - |z|)$$

$$\Psi_n = \sqrt{1 - y_n^2(x_{0n})^{-2}},$$
(13)

Plasma

Vacuum

$$A_{n1}^{CTR} = A_n^{CR} \frac{1 - \beta \Psi_n}{1 + \beta \Psi_n}, \qquad A_n^{CR} = \frac{4\beta^2}{x_{0n} x_p (1 - \beta^2)}, \qquad A_{n2}^{CTR} = A_n^{CR} \frac{2}{1 + \beta \Psi_n}, \qquad (14)$$

The CTR in vacuum exists in some domain $z < z_{f2}, \quad z_{f2} = ct \sqrt{\frac{1 - \beta^2 - y_n^2}{1 - \beta^2 - \beta^2 y_n^2}}$ The front of the CTR propagates in vacuum with the group velocity: $V_g = c \Psi_n$ 11

The first modes of the CR and CTR amplitude

If $\beta <<1$, then $A_n^{CR} = 4\beta^2 x_p^{-1} [1 + O(\beta^2)]$ $A_{n2}^{CTR} = 8\beta^2 x_p^{-1} [1 + O(\beta^2)]$

If $\beta \approx \beta_{1n} - \delta^2$, then $A_n^{CR} = \frac{4(1 - y_n^2)}{y_n^3 x_n} [1 + O(\delta^2)]$

$$A_{n2}^{CTR} = \frac{\frac{y_n x_p}{8(1 - y_n^2)}}{y_n^3 x_p} [1 + O(\delta)]$$

The CTR is effective for generation of radiation from nonrelativistic bunches.

CTR in vacuum and in the plasma Numerical approach: $Im(\omega)$ $Re(\omega)$ \mathcal{W}_{0n} $\boldsymbol{\omega}_{p}$ z < ct

 $I_{1,2}^{b} = \int d\omega B_{n1,2} \exp\left[i\left(k_{z1,2}|z| - \omega t\right)\right]$ Integrands $B_{n1,2}$ decrease in the I and II quadrants of a complex plane (ω) at |z| < ct and in the III and *IV* quadrants – at |z| > ctTransformation of the initial contour is in an upper half-plane into a green contour before "wave front" and in a lower half-plane into a red contour behind "wave front".

Single mode condition:

at
$$\omega_p = 2\pi \cdot 9 \text{GHz},$$

 $\left(n_{pe} = 10^{12} \text{ cm}^{-3}\right)$

$$\chi_1 = 2.405 < x_p < \chi_2 = 5.52, \qquad x_p = a\omega_p/c$$

1.3 < a < 3 (in centimeters)

Dependence of the first mode of the field \tilde{H}_{φ} on z/a at different time moments ct/a.

1 - the total field, 2 - the CTR,
3- the forced field

Dependence of the first mode of the field \tilde{H}_{φ} on z/a at different time

$$\widetilde{H}_{\varphi} = H_{\varphi} \frac{a^2}{q} \qquad \beta = 0.5$$

$$n = 1 \qquad \beta_{01} = 0.856$$

$$r/a = 0.5 \qquad \beta_{11} = 0.8$$

$$x_{p} = 4 \quad \sigma = 0$$

$$\omega_{p} = 2\pi \cdot 9 \text{GHz}$$

$$a = 2.1 \text{cm},$$

$$\omega_{01} = 0.94 \omega_{p}$$

moments ct/a.

1 - the total field, 2 - the CTR,
3- the forced field

Dependence of the first mode of the field \tilde{H}_{φ} on z/a at different time moments ct/a.

1 - the total field, 2 - the CTR,
3- the forced field

Dependence of the first mode of the field \tilde{H}_{φ} on z/a at different time

 $\omega_{01} = 0.51 \omega_{p}$

1 – the total field, 3- the forced field

Conclusion

- I.
- The CTR can be the main part of the wave field in some domain in the vacuum area of the waveguide under certain conditions.
- The CTR mode amplitude in vacuum may exceed the CR mode amplitude in the plasma.
- The CTR mode frequency is always less than the plasma frequency.
- The CTR is effective for generation of radiation from nonrelativistic bunches.
- The CTR effect can be used for the generation of singlemode monochromatic radiation.

Thanks for your attention!