SELDOM: search for electric dipole moment at LHC

Nicola Neri INFN Sezione di Milano

Channeling 2018 Ischia, 23-28 September 2018

Talk mostly based on EPJC 77:828, 2017

in collaboration with E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, J. Ruiz Vidal

EDM

Outline

- EDM as a probe for new physics
- Experimental method
- Detector simulation studies
- EDM/MDM sensitivity studies
- Summary

Electromagnetic dipole moments

- Classic systems $\delta = \mathbf{r}\rho(\mathbf{r})d^3r$ $\mu = \mathbf{r}\times \mathbf{j}(\mathbf{r})d^3r$
- Quantum systems $\delta = d\mu_N \frac{\mathbf{S}}{2}$ $\mu = g\mu_N \frac{\mathbf{S}}{2}$ $\mu \uparrow \uparrow s$ $\delta = \text{electric dipole moment (EDM)}$

 μ = magnetic dipole moment (MDM) $E B \stackrel{\mu}{\uparrow} \stackrel{\uparrow}{\uparrow} S$

• Hamiltonian $H = - \boldsymbol{\delta} \cdot \boldsymbol{E} - \boldsymbol{\mu} \cdot \boldsymbol{B}$

Time reversal, Parity: $d\mu_N \frac{S}{2} \cdot E \xrightarrow{T,P} - d\mu_N \frac{S}{2} \cdot E$

The EDM violates T and P and via CPT theorem, violates CP

Р

T

CP violation (CPV) is a necessary condition for baryogenesis (Sakharov, 1967)

CPV in weak interactions via CKM mechanism in the SM is too small to explain the absence of antimatter in the Universe

$$\eta = \frac{n_B - n_{\bar{B}}}{\gamma} \sim 6 \times 10^{-10} \quad \text{(WMAP)}$$

CPV in strong interactions allowed in SM. Stringent experimental limit from neutron EDM \rightarrow "strong CP problem" $|\delta_n| \le 2.9 \times 10^{-26} e \text{ cm } (90\% \text{ C.L.}) \Rightarrow \theta \lesssim 10^{-10}$ Phys.Rev.Lett.97:131801,2006

New sources of CPV are expected to exist

EDM a possible solution for baryogenesis

- EDM of fundamental particles from the structure of quarks and gluons, and processes with photon and flavour-diagonal coupling
- A measurement of a heavy baryon EDM is directly sensitive to:

Charm EDM in Standard Model ~10⁻³² e cm Charm EDM with new physics ~5·10⁻¹⁷ e cm

EDM observation = clear signature of new physics

Current limits on EDM

- Intense EDM program is ongoing worldwide and new experiments are planned
- Possibility to contribute at LHCb searching for the first time Λ_{c^+} , Ξ_{c^+} charm baryon EDM

Particle	Limit/Measurement [e cm]	SM limit [factor to go]	Free Particles	Atoms
e	$< 1.05 \times 10^{-27}$	10 ¹¹		
μ	$< 1.8 \times 10^{-19}$	10 ⁸	Particle EDM	Electron EDM
τ	$(-2.2 < d_{\tau} < 4.5) \times 10^{-17}$	107	n, μ , p, deuteron, \checkmark $\Rightarrow \Lambda^+, \Xi^+$ Electric	Ra, Rn, Fr, etc.
n	$<\!\!2.9 imes 10^{-26}$	10 ⁴	Dipole	
р	$<\!\!0.54 imes 10^{-23}$	10 ⁶	Momen	nt)
Λ^0	$(-3.0\pm7.4) imes10^{-17}$	10 ¹¹	New source of CP v Baryogenesis	violation s
$\nu_{e,\mu}$	$<\!\!2 \times 10^{-21}$		Electron EDM YbF, PbO, PbF,	Electron EDM $Gd_3Ga_5O_{12'}$
ντ	$< 5.2 \times 10^{-17}$		ThO, HfF⁺,ThF⁺, WN⁻, etc.	Gd₃Fe₂Fe₃O _{12'} etc.
Hg-atom	$<3.1 \times 10^{-29}$	$\leq 10^4$		
			Molecules	Condensed Stat

Ann. Phys. (Berlin) 525, No. 8–9 (2013)

Physics motivations for MDM

- Experimental anchor points for test of low-energy QCD models, related to nonperturbative QCD dynamics
- Test of quark substructure
- Measurement of MDM of particles and antiparticles would allow a test of CPT symmetry

Experimental method

8

Channeling in bent crystals

- Potential well between crystal planes
- Incident positive charge particle can be trapped if parallel to crystal plane (within few µrad)
- Well understood phenomenon (Lindhard 1965).
- Bent crystals used to:
 - steer high-energy particle beams
 - induce spin precession

Nicola Neri

Spin precession in bent crystals

Firstly predicted by
 Baryshevsky (1979)

V.G. Baryshevsky, Pis'ma Zh. Tekh. Fiz. 5 (1979) 182.

Fig. 1. Spin rotation in a bent crystal.

Determine particle
 gyromagnetic factor
 from BMT equation

V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509.

$$\theta_S = \frac{g-2}{2} \gamma \theta_C$$

 $\theta_{\rm S}$ = spin rotation angle

- $\theta_{\rm C}$ = crystal bending angle
- g = gyromagnetic factor
- γ = Lorentz boost

Proof of principle in E761

- E761 Fermilab experiment firstly observed spin precession in bent crystals and measured MDM of Σ⁺
- 350 GeV/c Σ+ produced from interaction of 800 GeV/c proton beam on Cu target
- Used upbent and downbent silicon crystals L=4.5cm, θ_C=1.6 mrad for opposite spin precession, reduced systematics

FIG. 3. Measured polarizations and uncertainties $(1\sigma \text{ statist-ical errors})$ after spins have been precessed by the two crystals. The dashed arrows show the expected precessions.

MDM of short-lived baryons

- Charm baryon MDM with bent crystals firstly studied in:
 - I. J. Kim, Nucl. Phys B 229 (1983) 251-268
 - V. V. Baublis et al., NIMB 90 (1994) 112-118
 - V. M. Samsonov, NIMB 119 (1996) 271-279
- Recently revisited for LHC energies:
 - V. M. Baryshevsky, PLB 757 (2016) 426–429, NIMB 402, 5 (2017)
 - L. Burmistrov et al., Tech. Rep. CERN-SPSC-2016-030 (2016)
 - O. A. Bezshyyko et al., JHEP 8, 107 (2017)

Fig. 3. Schematic diagram of the Λ_c^+ (Λ^0) polarization production.

Charm baryon polarisation

 Fixed-target production: polarisation is perpendicular to production plane due to parity conservation in strong interaction

- Λ_c+ polarisation vs transverse momentum
 measured by E791 experiment in 500
 GeV/c π⁻-N reactions
- Increases with Λ_{c^+} transverse momentum

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Spin precession in crystal electromagnetic field ($E^* \perp B^*$ in particle rest frame)

Nicola Neri

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Spin precession in crystal electromagnetic field ($E^* \perp B^*$ in particle rest frame)

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Spin precession in crystal electromagnetic field ($E^* \perp B^*$ in particle rest frame)

$$\frac{d\mathbf{S}}{dt} = \boldsymbol{\mu} \times \mathbf{B}^* + \boldsymbol{\delta} \times \mathbf{E}^*$$

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Spin precession in crystal electromagnetic field ($E^* \perp B^*$ in particle rest frame)

Fill the experimental gap in heavy baryon electric dipole moment searches. Method proposed in (EPJC (2017) 77:181)

Spin precession in crystal electromagnetic field ($E^* \perp B^*$ in particle rest frame)

NDM and EDM precession in the infit $\gamma \gg 1$, $a \ll g$

$$\Phi \approx \frac{g-2}{2} \gamma \theta_C \approx \frac{\pi}{2}$$

$$S_x \approx S_0 \frac{d}{g-2} [\cos(\Phi) - 1]$$

GEANT4 simulations of spin precession

 GEANT4 simulations of MDM/EDM spin precession in bent crystals in agreement with analytical calculations

Experimental proposal

Baryon	Requirements	EDM	MDM
Charm Λ_c +, Ξ_c + lifetime ~10 ⁻¹³ s	Polarised baryons Reconstruct TeV baryons uniquely produced at LHC Crystal channeling, effective B field ≈10 ³ T	First search sensitivity ~ 10⁻¹⁷ e cm	First measurement for QCD & baryon internal structure test <10 -3 precision

Experimental solution

- Strong production of charm baryons in fixed target
- ► Use LHCb forward detector
- Crystal with large bending angle to deflect particles in detector acceptance ≈ 15 mrad

Experimental proposal

INFN

• EDM/MDM from spin precession of channeled baryons in **bent crystals**

p extraction

EDM/MDM from spin precession of channeled baryons in bent crystals

p extraction Λ_{c^+} polarised production

EDM/MDM from spin precession of channeled baryons in bent crystals

p extraction Λ_{c^+} polarised production channeling spin precession

EDM/MDM from spin precession of channeled baryons in bent crystals

p extraction Λ_{c^+} polarised production channeling spin precession event reconstruction

Detector simulation studies

Possible implementation at IP8

W. Scandale, Physics Beyond Colliders, 06/09/2016

S. Redaelli, Physics Beyond Colliders, 01/03/2017

- Channeling of 6.5 TeV at LHC already demonstrated by UA9 collaboration W. Scandale et al., PLB 758 (2016) 129–133
- Detailed machine **simulations** are ongoing for **optimal layout** by the LHC collimation group lead by S. Redaelli

Nicola Neri

LHCb Upgraded detector

All sub-detectors read out at 40 MHz for a fully software trigger

Simulation studies

 Tungsten (W) 5 mm fixed target + bent crystal positioned in (0, 0.4, -116) cm, before the interaction point

- Use EPOS for fixed-target minimum bias events, PYTHIA for baryons produced in pW hard collisions
- Signal reconstruction and background rejection studied using LHCb full simulation

Nicola Neri

Fixed-target simulation

- ▶ Radiography of the target in (0, 0.3, -116) cm
- Distribution of origin vertex of stable charged particles in simulated events
- Simulated processes include: hadronic interactions, pair production, Bremsstrahlung, Compton, δ rays

INFN

Identification of signal events

• About $10^{-4} \Lambda_c^+$ produced in the target are channeled in the bent crystal

- Use PV to identify Λ_{c^+} produced in W target, and Λ_{c^+} vertex helps to identify decays outside of the crystal (max spin precession)
- Λ_{c} + angle determined by crystal bending angle, e.g. θ_{c} =15 mrad
- Channeled baryons have high momentum ≥1 TeV/c

Λ_{c} + momentum distribution

- At production (top)
- After channeling and p>800 GeV/c (bottom)

erc

Background rejection

• Rejection of unchanneled Λ_{c^+} produced in W target

- Signal region: 14.8< θ <15.2 mrad [$\sigma(\theta)$ ~25µrad], p_{Ac}> 800 GeV/c
- Background rejection 10⁻⁷ level and signal efficiency 80%
- High momentum Λ_{c^+} most sensitive for EDM measurements

Nicola Neri

EDM/MDM sensitivity studies

Sensitivity to EDM/MDM

- Studies based on:
 - Λ_c+ from fixed-target
 (Pythia + EvtGen)
 - Reconstruction, Decay flight efficiency (LHCb simulation)
 - Channeling efficiency (parametrization)
 - Fit to spin precession (pseudo experiments)

$$\sigma_d \approx \frac{g-2}{\alpha_f s_0 \left(\cos \Phi - 1\right)} \frac{1}{\sqrt{N_{\Lambda_c^+}^{\text{reco}}}}$$

 $N_{\Lambda_c^+}^{\text{reco}} = N_{\Lambda_c^+} \mathcal{B}(\Lambda_c^+ \to f) \varepsilon_{\text{CH}} \varepsilon_{\text{DF}} \varepsilon_{\text{det}}$ $\sigma(pp \to \Lambda_c^+ X) \approx 18.2 \mu b$ $|S_0| \approx 0.6$ $\epsilon_{det} \approx 20\% \quad \epsilon_{DF} \approx 10\%$ $\epsilon_{\rm ch} \approx 10^{-4}$ dN $\frac{d\Omega}{d\Omega} \propto 1 + \alpha_f \, \boldsymbol{S} \cdot \boldsymbol{p}$ $\alpha_{\Lambda^{++}K^-} \approx -0.67$ $\sigma_g \approx \frac{2}{\alpha_f s_0 \gamma \theta_C} \overline{N^{\rm reco}_{\Lambda^+}}$

Nicola Neri

Channeling efficiency

$$w(\theta_C, R) = \left(1 - \frac{R_c}{R}\right)^2 \exp\left(-\frac{\theta_C}{\theta_D \frac{R_c}{R}(1 - \frac{R_c}{R})^2}\right)$$

Channeling efficiency for Λ_{c^+} particles within Lindhard angle

 Total channelling efficiency: Lindhard angle, dechanneling,
 Λ_c+ decay flight: 1 • 10⁻⁵ (Si),
 4 • 10⁻⁵ (Ge)

 Parametrisation from Biryukov,
 Valery M. (et al.), *Crystal Channeling* and Its Application at High-Energy Accelerators, Springer Verlag (1997)

INFN

Crystal optimisation

Optimised sensitivity to EDM and MDM.
 Channeling and reconstruction efficiency included

Regions of minimal uncertainty of EDM (continuous line) and MDM (dotted line) defined as +20% uncertainty with respect to the minimum (point marker)

Sensitivity on EDM

- Technique applies to all short-lived positive baryons
- Possibility to test new physics models

Sensitivity on MDM

Caveat: running conditions still to be assessed

PoT = proton on target W target 5mm thick F= $5x10^8$ p/s for S1 EPJC (2017) 77:828

S1: Configuration at the LHCb
S2: Dedicated experiment at the LHC
Material of the crystal:
→ Silicon

→ Germanium

 First MDM measurements. Interesting precision, below 10⁻² for charm baryons

Summary

- Experimental proposal for unique baryon EDM/ MDM measurements in LHCb was presented
- R&D from crystal, LHC collimation, detector community is required to face remaining challenges
- Challenges / Preliminary results (available soon):
 - machine layout / detailed simulations ongoing
 - large bent crystal production / first prototype being tested on beam
- Proposal advanced within the Physics Beyond
 Collider study group. Under review by LHCb panel (FITPAN), aiming for data taking in Run3 (2021-2024)

Backup slides

Fixed target & bent crystal

- Fixed target (W, d~0.5 cm) attached to a long bent crystal (Ge, L~5 cm, θ~15 mrad, Si, L~7 cm, θ~14 mrad)
- Bending angle θ >10 mrad determined by LHCb acceptance
- Close to VELO for optimal vertex resolution: e.g. distance from VELO sensors ~100 cm (PO)

Track definitions at LHCb

Ghost track = is a fake track. For example it can be formed by matching a real track segment in the VELO (VELO seed) with a real track segment in the downstream tracker (T seed)

LHCb data sample and plans

- Collecting ≥9 fb⁻¹ in Run2 (2018). Major detector upgrade during LS2 (Upgrade I- 2020). Aim at 50 fb⁻¹ before 2030
- First detector improvements in PID, tracking, and ECAL during LS3 (Upgrade 1b - 2025)
- Major detector upgrade during LS4 (Upgrade II 2030). Aim at >300 fb⁻¹ after 2030 -

Experimental layout

- Crystal kicker deflects LHC beam halo towards a W target, outside of the LHCb detector acceptance
- Baryons produced in W target and channeled in bent crystal (signal events) enter the detector acceptance

Baryon EDM - Effective Lagrangian

- EDM coupling: $\mathcal{L}^{EDM} = -\frac{i}{2} \delta \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$
- ► CP-odd flavour diagonal effective *L* (scale 1 GeV)

- Negligibly small contribution from SM
- Background free search for new physics

Indirect limits

The dipole couplings of the **charm quark** are bounded indirectly by different observables using some model assumptions. These bounds, at the level of $< 10^{-15} - 10^{-17}e$ cm, can be challenged with this proposal.

The indirect limits on **b** quarks, $\leq 10^{-14} - 10^{-16} ecm$, are beyond the reach of this proposal. Ultimate sensitivity from a dedicated experiment

Constraints to BSM theories

Standard Model has its leading contribution at 3-loop level

Beyond SM contributions at **1,2 loops**

Enhanced for heavy flavours

- $d_c \sim 10^{-17} e \text{cm}$ S.-M. Zhao et al. $d_c \sim 10^{-17} e cm$ Z. Z. Aydin et al. $d_c \sim 10^{-19} e \text{cm}$ X.-J. Bi et al.
- EPJ C77 (2017), no.2 102 PR D67 (2003) 036006 arXiv:hep-ph/0412360

Experimental proposal

- Specifications:
 - Ge bent crystal ~15 mrad, 5 cm (Si bent crystal ~14 mrad, 7cm)
 - proton flux of $\sim 10^8 \text{ p/s}$
 - target position (0, 0.4, -116) cm,
 - target azimuthal angle 65 degrees
- Studies summarised in detail in a LHCb internal note.

Installation and operations

- Installation during EYETS after LS2:
 - crystal kicker installation in LHC ~1-2 days. Designed by CERN and produced by a company
 - W target + bent crystal in front of the LHCb detector at z=-116cm. Outside the VELO detector vacuum vessel
- Operations: dedicated running with nominal pp collisions
 - aim at 10¹⁵ PoT for the EDM, MDM measurements
 - a dedicated run at 5x10⁸ p/s would take about 10 weeks, assuming 30% efficiency in data taking
 - Runs of 2 weeks/year at 5x10⁸ p/s during Run3 would allow 6 • 10¹⁴ PoT by the end of 2023

