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Crystal Channeling
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Channeling : Tansverse momenta < potential well

Critical angle

Case Energy ✓c � Rc

[GeV] [µrad] [µm] [m]

SPS coast 120 18.3 33.0 0.3
SPS coast 270 12.2 49.6 0.6

H8 400 10.0 60.3 1.0
LHC inj. 450 9.4 64.0 1.1
LHC top 6500 2.5 243.2 15.6
LHC top 7000 2.4 252.3 16.8

Table 3.1: Critical channeling angle (✓c), oscillation period (�) and critical bending
radius (Rc) for Si crystals at typical energies of interest for our purpose.

Assuming a particle entering in the middle of the channel, and using the re-

lation pc
2 = vE where v is the particle velocity, the equation above can be

simplified as:

pv

2
✓

2  Umax . (3.9)

Thus, it is possible to define a critical channeling angle (✓c) after which par-

ticles cannot achieve stable planar channeling, even entering in such optimum

conditions. This angle depends on the particle momentum as:

✓c =

s
2Umax

pv
. (3.10)

Some values of critical angles, for proton beams and Si crystals, are given for a

few energies of interest in Table 3.1: energies of SPS beam tests with coasting

beams, H8 extraction energy, LHC injection and top energy.

The equation of motion of a particle experiencing planar channeling can be

obtained from the second derivative of the equation (3.7), which leads to:

pv
d

2
x

dz2
+

8Umax

d2
p

x = 0 , (3.11)

where the harmonic approximation of the potential given in equation (3.4) has

been used, together with the relation ✓ = dx/dz, where z is the longitudi-

nal coordinate. In these approximations, the particle will follow a sinusoidal
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(1) & (6) amorphous
(2) channeling
(3) dechanneling
(4) volume reflection
(5) Volume capture

Single pass measurements with 400 GeV protons.
Strip crystal (110) with a bending of 144 μrad.

Volume Reflection (VR)

Dechanneling (DC)

Planar channeling (CH)
The particles are trapped in the
channel, hence if a curvature is given
to the lattice the particles direction
will be modified by θb = l/R



Critical Radius 
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The crystalline planar potential asymmetry increase
as the ratio of the particles energy and the crystal
bending radius (R)

[2] E. Bagli et al., Steering efficiency of a ultrarelativistic proton beam in a thin bent crystal,
Eur. Phys. J. C, 74 (1) (2014), pp. 1-7

The crystal channeling efficiency is a 
function of the ratio R/Rc

A critical radius (Rc) can be defined
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Collimation System in LHC
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To protect the superconductive magnets from high energy deposition induced by lost particles

Collimation system is needed!
η = 10-4  is the actual performance in LHC
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Primary Halo
Secondary Halo

Tertiary Halo
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Circulating Beam Insertion Arc Interaction
Point

Protection
Devices

Primary
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Secondary
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Absorbers Tertiary 
Collimators

Bottleneks

TCSG
TCP

TCLA

Halo cleaning: reduce the risk of 
magnet quenches

Concentration of 
losses/activation in controlled 
areas
Avoid many hot locations around 
the 27km-long tunnel

Multistage system of 50 collimators per beam.
LHC: only machine where collimation must be used continuously in operation

The cleaning inefficiency with ions drops to 10-2!



Crystal Collimation
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Advantages of crystal collimation at the LHC:
• Improve collimation cleaning (by a factor 10);

Reducing off-momentum losses in DS 
• Lower impedance;

Less collimators at larger gaps

Crystal collimation could improve the ion cleaning 
and is one of the R&D subject for HL-LHC upgrade
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<θ>MCS ~ 3.4 μrad (7 TeV)

Amorphous (0.6 m of C)

Crystal
(Channeling)

(4 mm Si)

<θ> ~ 50 μrad (7 TeV)

310 T equivalent 
magnetic field!
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Crystal Collimation Layout
Semi-analytical studies and full tracking simulations has 
been provided to find the best layout for the LHC test 
stand.
The major requirements (for both injection and flat top) 
have been studied [1]:
1. Intercept the channeled halo with enough clearance by 

the TCSGs downstream
2. Respect the aperture constraints
3. Collimation cleaning performances optimisation

Crystal request defined before 2014 restart:
o Bending angle: 50 μrad
o Length: 4 mm
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[1] D. Mirarchi, et al., Design and implementations of  crystal collimation test stand at the Large Hadron Collider, Eur. Phys. J. C, 77 (6) (2017), p. 424
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]

3 75 60 50

4 100 80 66.7

5 125 100 83.3

Rc∼15.6 m @6.5 TeV
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1. Angular Scan

AM/CH 
loss reduction

First Observation of Channeling in LHC @ 6.5 TeV!

local losses 
vs 

crystal angular orientation
Beam
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RF 24.0 
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2. Absorber Scan

Local Transverse Position [mm]
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• With Transport Matrix can be evaluated 
the deflection angle

• Losses at channeling plateau, normalised 
to the primary beam spike, can evaluate 
the multiturn channeling efficiency

local losses 
vs 

collimator transverse position
Beam
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θb ~ 55 μrad~ 84 %



B1 Angles
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Crystals on B1 out of specs

B1-VB1-H



Collimator Scan Measurements
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Collimator Scan Measurements
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Collimator Scan Simulations
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In collimator scan simulations, it is evident that the 
dechanneled population at lower deflection angles is higher 
in B1-H.
The main difference we can found between the two 
condition is the bending angle of the two crystals.
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Proton Cleaning Measurements
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• B1-V is improving the collimation cleaning 
by a factor > 10

• B1-H shows more losses in dispersive area 
(closer to standard collimation) 

B1-V

B1-H

STD

~ 3e-15

~ 2e-16

~ 1e-15



Proton Cleaning Simulations 
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Comparing cleaning simulations to 
measurements
• good agreement with data is found in vertical 

plane: same factor 10 improvement
• important difference is observed in the 

horizontal plane with respect to data
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Conclusions
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ü Crystals too close to critical radius (~ 4 times ) shows a enhancement of 
dechanneled particles at low deflections

ü At LHC 6.5 TeV, B1-H crystal is too close to critical radius
§ In linear scans is observed a reduced efficiency due to dechanneling enhancement
§ In proton cleaning measurements B1-H showed reduced performance compared 

to B1-V

ü Simulations benchmark confirmed the hypothesis
§ Good agreement with experimental data for B1-V (>6Rc)
§ Allowed good understanding of B1-H features
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