

## Monitoring of the plasma generated by a gas-puff target source dedicated for SXR/EUV microscopy

#### Alfio Torrisi<sup>1</sup>, PhD

P. W. Wachulak<sup>2</sup>, H. Fiedorowicz<sup>2</sup> and L. Torrisi<sup>3</sup>

<sup>1</sup>Nuclear Physics Institute, AS CR, 25 068 Řež, Czech Republic <sup>2</sup>Institute of Optoelectronics, Military University of Technology, Warsaw, Poland <sup>3</sup>Dip.to di Scienze Mat. e Inf., Sc. Fisiche e SdT, Università di Messina, Italy

torrisi@ujf.cas.cz

CHANNELING 2018 – ISCHIA (ITALY) – September 26th 2018

# Outlines

- Motivations on development of laboratory-based SXR and EUV compact sources based on double stream gas-puff target (DSGPT)
- Feasibility of DSGPT for nanoimaging experiments and set-up descriptions
- Plasma generated by DSGPT: diagnostic by Si and SiC detectors (linearity, time evolution, signal intensity)
- Applications of DSGPT
- Conclusions

## **Large Facilities**



#### Stanford Linear Accelerator (USA) Source length: ? 3 km



#### TOMCAT - X02DA (Switzerland) Circumference: ? 288 m Advantages Drawbacks

#### Bright Sources

- High number of photons
- Tunable

- Limited Access
- High complexity & Costs (Berkeley, CA, USA)
- Expensive maintenance
   Circumference: 
   200 m



Bessy II (Berlin, Germany) Circumference: ? 240 m



# Compact laser-plasma sourcesSolid targetCapillary dischargeLiquid – Jet Target







#### <u>Advantages</u>

- Easily accessible
- User Friendly
- Low cost of operation
- Laboratory environment

### EUV/SXR lamp for metrology and microscopy



Prof. Henryk Fiedorowicz, IOE WAT, Warsaw, Poland

## Motivations for EUV and SXR imaging



## SXR (λ=0.1-10nm)

#### <u>High-contrast biological imaging</u>



DX = Spatial Resolution I = Illumination wavelength NA = Numerical aperture k = 0.61 for incoherent illumination

## EUV (λ=10-120nm)

#### Optical contrast

due to the atomic resonance frequencies

High absorption in very thin layers

good penetration in micrometer-thick specimens

much larger penetration distances for photons than for electrons Wavelength (nm)







SiC detectors cut VIS and EUV radiation emitted from plasma, enhancing the sensitivity to very fast ions.

 $N_2$  plasma (a) |= 2.88 nm

## Advantages

- [SiC 3.28 eV vs. Si 1.1 eV]
- Electrons and fast ions detection
- Low current at room T
- **Radiation Hardness**
- **High electron mobility**



#### Silicon Detector – HS1





**Quantum Efficiency Calculation** 

|                                                                   | AXU<br>(manufact      | V/HS1<br>turer's data)                               | SiC<br>(experimental data)                                |                      |  |
|-------------------------------------------------------------------|-----------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------|--|
|                                                                   | $QE_{\lambda}$ [e/ph] | $\begin{array}{c} R_{\lambda} \\ [mA/W] \end{array}$ | $\begin{array}{c} { m QE}_{\lambda} \ [e/ph] \end{array}$ | $R_{\lambda}$ [mA/W] |  |
| $\lambda_{N_2} = 2.88 \text{ nm}$<br>$E_{N_2} = 430.5 \text{ eV}$ | 119.49                | 277.5                                                | $3.41\pm0.13$                                             | 7.92                 |  |
| $\lambda_{Ne} = 1.35 \text{ nm}$ $E_{Ne} = 918.5 \text{ eV}$      | 253                   | 275.4                                                | $7.10\pm0.16$                                             | 7.73                 |  |







#### Intensity signal



## **Applications**

#### Double stream gas-puff target laser-plasma EUV/SXR source



#### **Overview of double stream gas-puff target microscopes**



#### Advantages

- Compactness
- Spatial resolution: ~50 60 nm
- Short time acquisition 3 ns 1 min
- Applications in biology, material sciences and nanotechnology
- Possibility of commercialization

#### **Drawbacks**

- Limited number of photons and low rep. Rate compared to synchrotrons
- Possible improvement of SNR



- The presented results demonstrated that the SiC detectors have sensitivity and performance comparable to Si detectors in the diagnostics of laser-generated plasma emitting SXR up to UV radiation.
- The **low reverse current** (of about three orders of magnitude lower than in silicon), allows to employ the SiC detectors **at room temperature**, giving **higher sensitivity** with respect to silicon detectors.
- The higher energy gap of 3.3 eV in SiC, with respect to the 1.1 eV of Si, gives to the detector insensitivity to the visible light produced by the laser-generated plasma so that it does not need filters to reduce the spurious VIS radiation arriving on the detector.
- The higher displacement energy of the SiC (25 eV) with respect to the Si-Si crystalline structure (15 eV), permits to reduce significantly the crystal damage to the detector under high radiation doses and high deposited energies.
- The higher melting point and effective atomic number of the SiC, with respect to the Si, allows to use the detector with thinner active regions and to have high efficiency for X-rays, electrons, and ions at high energy.
- The obtained results are very promising to be extended to a micro-pixel CCD camera to acquire an X-ray map from applications of SiC detectors to X-ray microscopy or to detect images in the UV region.



## **Compact EUV microscope based on Ar plasma**

**Source Parameters** 

<u>A.Torrisi</u> et al., – Journal of Microscopy, Vol. 265, Issue 2 (2017)



Inverse rel. bandwidth (FWHM) of emission  $\lambda/\Delta\lambda$ ~60 @ I=13.84 nm

**CCD camera** iKon-M (Andor), 1k x 1k pix, 13x13 μm<sup>2</sup>



<u>A.Torrisi et al., NIMA (2018) – under review</u>

#### HS1 – Si Detector

#### Detector

| Electro-optical characteristics of a HS1 - Si detector at 25°C |                                 |                   |       | Electro-optical characteristics of a SiC detector at 25°C |                                   |                   |       |  |
|----------------------------------------------------------------|---------------------------------|-------------------|-------|-----------------------------------------------------------|-----------------------------------|-------------------|-------|--|
| PARAMETERS                                                     | TEST CONDITIONS                 | TYPICAL<br>VALUES | UNITS | PARAMETERS                                                | TEST CONDITIONS                   | TYPICAL<br>VALUES | UNITS |  |
| Active Area                                                    | 0.02 mm x 0.02 mm               | 100               | mm²   | Active Area                                               | 2.52 mm x 2.52 mm                 | 16                | mm²   |  |
| Responsivity                                                   | @2.88 nm, V <sub>R</sub> = 0 V  | 277.5             | mA/W  | Responsivity                                              | @2.88 nm, V <sub>R</sub> = - 20 V | 7.92              | mA/W  |  |
| Reverse Current                                                | I <sub>R</sub> = 1 mÅ           | 10                | Volts | <b>Reverse Current</b>                                    | I <sub>R</sub> = 6 pA             | 1- 10             | Volts |  |
| Capacitance                                                    | $V_{R} = 0 V$                   | 10                | nF    | Capacitance                                               | V <sub>R</sub> = - 20 V           | 100               | рF    |  |
| Rise Time                                                      | V <sub>R</sub> = 0 V, RL = 50 W | 10                | msec  | Rise Time                                                 | <1                                | < 1               | nsec  |  |





$$\psi_{\rm ph} = \frac{\int V(t)dt}{\mathrm{QE}_{\lambda} \cdot e \cdot R_i} \qquad \qquad R_{\lambda} = \frac{\mathrm{QE}_{\lambda} \cdot \lambda \cdot e}{\hbar \cdot c}$$