

New ultrashort OPCPA petawatt class beamline for Vulcan laser facility

Marco Galimberti

Vulcan Laser System

8 Beam Nd:Glass System

TAW *Long Pulse:* 6 beam 250J in 1ns *Short Pulse:* 70J 1ps 60J 1ps or 200J 10ps

UK Research and Innovation Lost Interest from the User Community

TAP Long Pulse: 250J in 1ns Short Pulse: 500J 500fs

Target Area Petawatt

Grating 1

Maintain existing TAP beam (500J 500fs + 250J 1ns) Add new beamline to increase scientific capabilities Requested Specification: ~40J, <30fs, 1 Shot / 5 min Look to provide enhanced long pulse capability (~1kJ 1ns)

UK Research and Innovation

cience & Technology

New imaging capabilities

Complimentary beamline with the space in TAP will enable the development novel imaging capabilities for applications and science

Imaging laser driven shocks "on-the fly"

UK Research and Innovation

Facilities Counci

Multi-beam capabilities

Combinations of complimentary beamline, existing PW and additional Long pulse will enable pump-probe experiments to reveal dynamics of extreme states of matter

Study of instabilities

< Rayleigh-Taylor

Temporal evolution of the B-field inside the laser spot

Experiments combining e⁻ and p⁺:

Radiation Hardness Testing Space Radiation Reproduction

Raman Amplification

Laser Technology

TiSa forces wavelength to 800nm, require more space (multipass) and development (transverse lasering mitigation)

OPCPA more flexible on wavelength and requires less space.

800nm Bandwidth 100nm case

Crystals	Centre Wavelength (nm)	Bandwidth (nm)	Output Energy (J)
DKDP 95%	838	66	26
LBO	806	102	58
DKDP 95%	920	177	40
LBO	877	224	58
Ti:S (Gemini)	800	40	15 (on target)
LBO Ti:S (Gemini)	920 877 800	177 224 40	40 58 15 (on targ

• Optimal Spectral region for LBO

Preferred Option: OPCPA with LBO

Laser Specification

Project Split in 3 Phases to provide new capability to TAP quickly

	Phase I	Phase IIa	Phase IIb			
Pulse Length	<30 fs					
Spectral Bandwidth	768 nm – 973 nm					
Final Beam Size	200 mm					
Final Beam Shape	Round	Round	Square			
Energy on Target	~7 J	~30 J	~40 J			
Rep. Rate	5 min	20 min	5 min			

Project Plan

Internally Funded

		Half 2, 2017	Half 1, 2018	Half 2, 2018	Half 1, 2019	Half 2, 2019	Half 1, 2020	Half 2, 2020
Task Name	Finish 👻	, J S N	J M M	J S N	J M M	J S N	J M M	J S N
TAP Beamline Phase I	Mon 26/10/20	Phase I						
Project starts	Mon 02/10/17	_ 02/10)					
Project starts	Mon 02/10/17	t starts 🔶 02/10)					
Recruit staff	Mon 26/03/18							
Recruit staff	Mon 26/03/18	uit staff						
WP1 PhI Refurbishment of TAE & Building	Thu 02/05/19	shment of TAE 8	k Building		•			
WP2 PhI Disc Amplifier & Cap Bank	Tue 05/11/19	sc Amplifier & Ca	ap Bank 💗					
WP3 PhI Relocation and modification	Tue 17/12/19	ication					•	
WP4 PhI OPCPA Amplification	Wed 18/03/20	'A Amplification	-					
WP5 PhI Compression & Diagnostics	Fri 14/08/20	sion & Diagnosti	cs 🗸					
WP6 PhI Beam Prop & Focussing	Fri 14/08/20	Beam Prop & Foo	cussing					
WP7 PhI Source Generation & Plasma Diagnostics	Mon 26/10/20	eration & Plasma	a Diagnostics 🤛					
Phase 1 System ready	Mon 26/10/20						Phase 1 Syst	tem ready 🚸 26/10

Phase I expected to be completed at the end of 2020

LASER DESIGN

Seed for probe taken from either seed for new beamline or out of the ps OPCPA Beam path lengths are likely require stabilisation

UK Research and Innovation

Science & Technology Facilities Council

Basic Layout

TAP New Layout

UK and

centra/

Betatron Imaging Setup

Future Long Pulse Options

Currently have single LP 108 beam into TAP (250J 0.5-8ns).

Planned to use the 208 Disk amplifier to deliver up to 1kJ

This will allows to study long pulse interaction using the new TAP beamline

LARGE OPCPA STAGES

Pump Laser

UK Research and Innovation A multi-pass slab amplifier will be used to increase pump energy to +250J in the IR

Air-cooled design is under development to increase rep. rate to 5min

Pump Laser

The rod chain has been commissioned Output energy will be increased from 30J in the IR to ~50J Work to increase conversion efficiency to 2ω

Giedre Archipovaite, Mario Galletti, Pedro Oliveira FRONT END

Front End Schematic

and Innovation

Ps OPA 1 & 2 Simulation

and Innovation

1D Simulation Result

Pump:

- Size 1.3mm
- Duration 8ps
- Energy 0.23mJ
- Signal:
- Size
- 1.3mm ∼4<mark>.8</mark>ps
- Duration
- Energy In 0.1nJ
- Energy Out 47uJ

Ps OPCPA 12 Layout

Ps OPCPA 34 Layout

Pump laser is coming

Require Vacuum Telescope for Pump Beams

Ps OPCPA 12 Stability

Output signal was not stable over timescale of few minutes

Investigation identified a timing shift between pump and seed

"Crude" automatic timing was implemented

Proper automatic timing system is on order

Ps OPCPA 1&2 Output

Science & Technology Facilities Council

Test Compression

Simple Test Compressor Using offshelf achromatic lens and grating

Use of the DAZZLER to control spectral phase not possible

Pulse measured using SPIDER from Gemini laser system, unable to handle full bandwidth

Compression Results

10

Time [min]

15

20

5

Compressed down to 19.4fs (20.9fs Avg)

Only used ~120nm bandwidth

Pulse length stable over 20min

UK Research and Innovation

0

Conclusion

Imaging Capability is Required on the Target Area Petawatt at Vulcan Facility

Proposed New Beamline of ~40J <30fs, 1 Shot / 5 min

Full OPCPA Based Laser System

New ps OPCPA Under Development

Beamline is Planned to be Delivered in 2020 (Phase I)

