THERANOSTIC RADIONUCLIDES @

Gaia Pupillo, PhD

gaia.pupillo@Inl.infn.it

Therapy

 (α) ; β^- ; Auger e^-

Diagnostic

γ; β+

SPECT PET

Advantage of the use of the same radiopharmaceutical labelled with

Thera nostic
Radionuclides

→ Selection of patients *prior* therapy
 → Tailored dosimetry

Thera nostic Radionuclides

67Cu

61.83 h half-life

47SC 80.38 h half-life

β and γ radiation

Suitable for SPECT/CT diagnostic Short-medium range of therapeutic effect

Half-life suitable for slow biodistribution vectors (e.g. radioimmunotherapy, RAIT)

⁶⁷Cu

COME COpper MEasurement

INFN Project 2016 (Dotazioni CSN3 - LNL)

Research results

COME

- Cross section measurement with ⁷⁰Zn targets in collaboraton with Arronax facility (Nantes, France)
- Development of radiochemical process @ FE

Research results

✓ Comparison with the nuclear reaction on ⁶⁸Zn

→ Estimation of best irradiation condition for production (preclinical applications)

47Sc

PASTA

Production with Accelerators of Sc-47 for Theranostic Applications

INFN Project 2017 – 2018 (Grant Giovani CSN5)

Research results

PASTA

- Cross section measurement with ^{nat}V , ⁴⁸Ti and ^{49/50}Ti targets ongoing (Arronax)
- Thin target of enriched material produced by HIVIPP
- Study of radiochemical process for Sc/Ti separation

→ Estimation of best irradiation condition for production with proton cyclotrons (preclinical applications)

⁶⁷Cu

FUTURE INTEREST

- ✓ Development of a high-power targets
- ✓ Optimization of radiochemical process, including development of automatic module and recovery of irradiated material
- ✓ Preclinical test also with the mixture ⁶⁴Cu/⁶⁷Cu and ⁴⁴Sc/⁴⁷Sc radiopharmaceuticals

