LISA Data Challenge.

Stas Babak and Antoine Petiteau (for LDC working group)

Astroparticule et Cosmologie (APC) Paris, France

1-2 March, 2018, Padova

- To foster the data analysis development: improve performance of existing algorithms, try new algorithms
- To make a common platform for evaluation and performance comparison of various algorithms
- To address the science requirements: project oriented challenges
- To introduce the software development standards for the data analysis pipeline
- To prototype and develop the end-to-end data analysis pipeline (integration into DDPC – Distributed Data Processing Center).

- To foster the data analysis development: improve performance of existing algorithms, try new algorithms
- To make a common platform for evaluation and performance comparison of various algorithms
- To address the science requirements: project oriented challenges
- To introduce the software development standards for the data analysis pipeline
- To prototype and develop the end-to-end data analysis pipeline (integration into DDPC – Distributed Data Processing Center).

- To foster the data analysis development: improve performance of existing algorithms, try new algorithms
- To make a common platform for evaluation and performance comparison of various algorithms
- To address the science requirements: project oriented challenges
- To introduce the software development standards for the data analysis pipeline
- To prototype and develop the end-to-end data analysis pipeline (integration into DDPC – Distributed Data Processing Center).

- To foster the data analysis development: improve performance of existing algorithms, try new algorithms
- To make a common platform for evaluation and performance comparison of various algorithms
- To address the science requirements: project oriented challenges
- To introduce the software development standards for the data analysis pipeline
- To prototype and develop the end-to-end data analysis pipeline (integration into DDPC – Distributed Data Processing Center).

- To foster the data analysis development: improve performance of existing algorithms, try new algorithms
- To make a common platform for evaluation and performance comparison of various algorithms
- To address the science requirements: project oriented challenges
- To introduce the software development standards for the data analysis pipeline
- To prototype and develop the end-to-end data analysis pipeline (integration into DDPC – Distributed Data Processing Center).

- The project is hosted under git-lab https://gitlab.in2p3.fr/stas/MLDC (sign up is required)
- There are bi-weekly teleconferences. The web-page is open to public (just requires registration to access data). https://lisa-ldc.lal.in2p3.fr/home

History: MLDC 2006-2011

	MLDC 1	MLDC 2	MLDC 1B	MLDC 3	MLDC 4
Galactic binaries	 Verification Unknown isolated Unknown interfering 	• Galaxy 3x10 ⁶	 Verification Unknown isolated Unknown interfering 	• Galaxy 6x10 ⁷ chirping	• Galaxy 6x10 ⁷ chirping
Massive BH binaries	• Isolated	• 4-6x, over "Galaxy" & EMRIs	• Isolated	• 4-6x spinning & precessing over "Galaxy"	 4-6x spinning & precessing, extended to low-mass
EMRI		• Isolated • 4-6x, over "Galaxy" & MBHs	• Isolated	• 5 together, weaker	• 3 x Poisson(2)
Bursts				 Cosmic string cusp 	 Poisson(20) cosmic string cusp
Stochastic background				• Isotropic	• Isotropic

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from LPF

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from LPF

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from LPF

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from LPF

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from LPF

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- We need to apply the response function to the GW signal: requires LISA orbit.
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from I PF

Generating LDC data set: first challenge

- We need to decide on the GW sources (and number of sources) which we want to put in the data
- We need to decide on the parameters of each signal (we will use catalogues of sources based on several astrophysical models)
- We need to decide on the theoretical model of the GW signal to be used ("state-of-art" models are usually computationally expensive)
- \bullet We need to apply the response function to the GW signal : requires LISA orbit. \checkmark
- We need to decide on the noise (simplistic: equal noise in each measurement, uncorrelated, Gaussian, or)
- We need to produce the noise with the signal(s): input from I PF

LDC data production pipeline

The data sets in the "Radler"-data release

The aim is to resurrect the existing tools and get up to speed for real challenges. The noise will be **very** simple (Gaussian, uncorrelated A, E, T channels), analytic LISA orbit, 1.5 generation TDI (rigid LISA). Duration of each simulated data is 1 year.

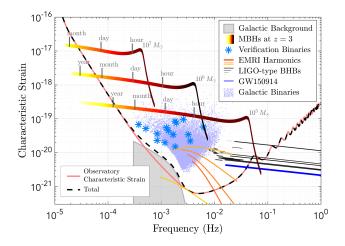
- Galaxy: Gaussian noise + 60 mln. Galactic white dwarf binaries (using the new catalogue for the detached binaries)
- Binary massive black holes (V1): Gaussian noise + 1 MBH binary system, SNR \sim 150 300, spinning non-precessing, includes inspiral, merger and ringdown (IMRPhenomD model)

The data sets in the "Radler"-data release

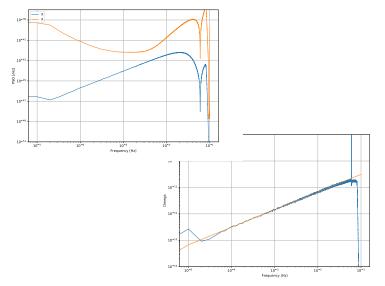
- Binary massive black holes (V2): Gaussian noise but unequal in each link + 1 MBH binary system, SNR
 ~ 150 - 300, spinning non-precessing, includes inspiral, merger and ringdown (IMRPhenomD model)
- Extreme mass ratio inspirals (EMRIs): Gaussian noise + 1 EMRI system SNR \sim 40 60, generic orbit. Relatively narrow priors on the source parameters. Using AK model (Barack & Cutler 2004)

1-2 March 2018

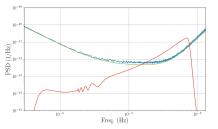
9/18

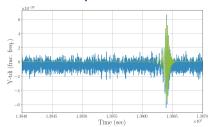

The data sets in the "Radler"-data release

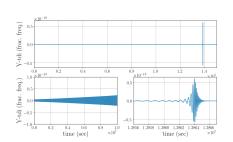
- LIGO sources: binary black holes of stellar origin. Those are BBHs observed in LIGO band. Gaussian noise + population of BBHs. There could be additional data set with only "bright", individually detectable sources. Problem of data generation (chirping, high sampling rate, long duration).
- Stochastic, isotropic GW signal + Gaussian noise.
 Detectable level. Realized as a superposition of uniformly distributed on the sky sources.


1-2 March 2018

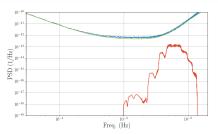
Overview of sources in the LISA band

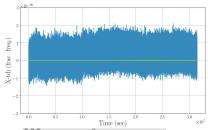



Stochastic GW Background example



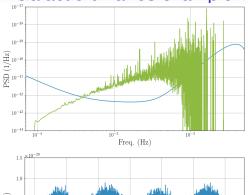
Massive BH Binaries example

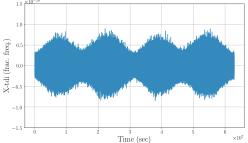


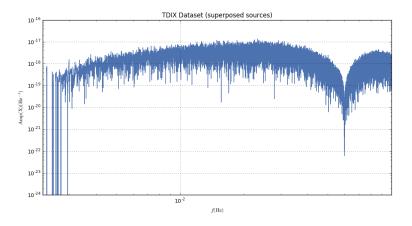


	Time (sec)		
	tic		
PhaseAtCoalescence	1.0	Radian	
PolarAngleOfSpin2	0.0	Radian	
PolarAngleOfSpin1	0.0	Radian	
Mass1	2057518.931	SolarMass	
EclipticLongitude	4.4	Radian	
CoalescenceTime	13864000.0	Second	
Redshift	3.6111	dimensionless	
Mass2	1440415.418	SolarMass	
Approximant	PhenomD	ModelName	
InitialAzimuthalAngleL	0.0	Radian	
EclipticLatitude	0.7	Radian	
AzimuthalAngleOfSpin1		Radian	
AzimuthalAngleOfSpin2	ì	Radian	
Spin2	0.894516563931	MassSquared	
Spin1	0.941100469122	MassSquared	
Cadence	10.0	Seconds	
InitialPolarAngleL	2.12	Radian	
TDI	Y	name	
armlength	2500000000.0	m	
orbit	Analytic	name	
Instrument	ESACallv1-2	name	
LISACode_version	25.04.2016	string	
Duration	20971520.0	sec	
Model	Eccentric-Rigid-LISA_L3	ĺ	
Cadence	10.0	sec	

EMRI example




1.0 x10 ⁻²²						
0.5 V.tdi (frac. freq.)	0.5	1.0	1.5 Time (se	2.0	2.5	3.0 ×10 ⁷


Galactic binaries example

SOBBH example

Beyond the first data set

- We need to move away from the simplistic assumption about the noise
- Develop the pipelines to produce L1 data (TDI) from raw data (L0): calibrations, remove / reduce noises, gaps, frequency planning, non-stationarity, unexpected events
- We will utilize LPF results to mimic instrumental artefacts in LISA simulations (gaps, glitches, non-stationarity)
- Work together with the simulation group: end-to-end simulation of the data
- Work on the estimation effect of gaps is under way
- For each astrophysical source we need to revisit the detection (Gaussian) algorithms with realistic noise
- Set of tutorials...

Summary

The LDC production is underway...

- LDC webpage is there
- Waveform generation code: needs further tests.
- The data and metadata will be stored in hdf5 format and distributed via web interface (stored in the database)
- LISACode the simulator which will be used to apply response function and to produce the noise.
- First prototype of simplistic pipeline, data flow, data products, data formats, code integration, uploading the data to the database and retrieving - done. Requires extensive testing.

We learn through doing...

