Electromagnetic facilities and observing strategies for multi-messenger science: situation and future perspectives.

> Enrico Cappellaro +GRAWITA collaboration

Search for EM counterparts

Search for EM counterparts

~ 80 telescopes > 110 papers

Search for transients

Deep survey of the full sky error map with large telescopes see talk of Aniello Grado

Scan galaxies at the right distance for bright transients

see talk of Sheng Yang

Discovery of the kilonova SSS17a = DLT17ck = AT2017gfo

GW: 12:41:04 UT

SSS17a GCN +12.40h

Discovery of the kilonova SSS17a = DLT17ck = AT2017gfo

GW: 12:41:04 UT

• Finding AT2017gfo was fairly easy

 Without the GW trigger AT2017gfo would not be found (wrong season)

17

Discovery of the kilonova

Shappee et al. 2017

Discovery of the kilonova

Shappee et al. 2017

Discovery of the kilonova

Shappee et al. 2017

0.0

4000

6000

10000

wavelength

20000

ESO leading contribution

choice of FoV
spectral range resolution obs mode:
ad.opt.
polarimetry
2D spectra

Optical-infrared monitoring

Compilation from Villar et al. 2017 Andreoni+; Arcavi+; Coulter+; Cowperthwaite+; Díaz+; Drout+; Evans+; Hu+; Kasliwal+; Lipunov+; Pian+; Pozanenko+; Shappee+; Smartt+; Tanvir+; Troja+; Utsumi+; Valenti+

Stringent upper limits to the polarization degree *Covino et al.*

Shappee et al 2017 Pian et al. 2017 Smartt et al. 2017

Optical-infrared monitoring

$L \propto R^2 T^4$

Optical-infrared monitoring Drout et al. 2017

$L \propto R^2 T^4$

Radius at early epoch requires expansion velocity of ~0.3c

Nucleosynthesis

Kasen et al. 2013

Kilonova models predict the emergence of broad features of rprocess elements

Nucleosynthesis

Kasen et al. 2013

Kilonova models predict the emergence of broad features of rprocess elements

Synthetic spectra computation Kasen et al., Tanaka et al.

- Numerically solving the Boltzmann equation for relativistic radiation transport in a radioactive plasma
- Models assume spherical symmetry, local thermodynamic equilibrium, and uniform abundances... Three tunable parameters are an ejecta mass, a mean velocity and a fractional lanthanide abundance. Caveat: large uncertainties in the current atomic line lists
- Simply summing the flux produced by separate single-component models is clearly questionable, but can be justified if eg. the kilonova components are spatially disjunct

observations Pian et al. 2017, Smartt et al. 2017 models Kasen 2017

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89 Ac	90 Th	91 Pa	92 U											

Merging neutron starsExploding massive starsBig BangDying low mass starsExploding white dwarfsCosmic Ray Fission

Merging neutron starsExploding massive starsBig BangDying low mass starsExploding white dwarfsCosmic Ray Fission

Lantha

Mergin Dying Optical/NIR daily spectroscopic monitoring was the key to unveil the kilonova properties

on

X-ray

First detection tc = +9d with Chandra

$v_{\rm cl} \approx 0.2c$ On-axis observer $\theta_{\rm v} = 0^{\rm o}$ uminosity ... ≈ 0.08c Time Intermediate-angle observer Edge-on observer \mathcal{A} $\theta_{\rm v} = 90^{\circ}$ Luminosity _uminosity GW170817 Time Time

Short GRB view offaxis by 20-40 deg or cocoon emission

Troja et al. 2017

Radio

First detection tc = +16d with VLA at 3-6 GHz

Short GRB view offaxis by 20-40 deg or cocoon emission

Hallinan et al. 2017

Radio

First detection tc = +16d with VLA at 3-6 GHz

Hallinan et al. 2017

Short GRB view off-

- GRB and X-rays: jet, cocoon or isotropic
- ejecta: origin, composition and geometry of different "components"
- remnant: compact (BH or NS) and extended (ejecta/ISM interaction)

GW170817

- GRB and X-rays: jet, cocoon or isotropic
- ejecta: origin, composition and geometry of different "components"
- remnant: compact (BH or NS) and extended (ejecta/ISM interaction)

new radio, X-ray, optical observations

GW170817

We are still receiving EM radiation from AT2017gfo

D'Avanzo et al. 2018

Xray XMM-Newton

Lyman et al. 2018

Troja et al. 2018

X-ray Chandra

Margutti et al. 2018

Radio VLA

Margutti et al. 2018

model for off-axis relativistic jet

The non-thermal synchrotron emission is consistent with both radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and off-axis collimated ejecta characterized by a narrow cone of ultrarelativistic material with slower wings extending to larger angles.

- GRB and X-rays: jet, cocoon or isotropic
- ejecta: origin, composition and geometry of different "components"
- remnant: compact (BH or NS) and extended (ejecta/ISM interaction)

learn from diversity:

- binary mass (NS+NS, NS+BH)
- viewing angle

GW170817

Kilonovae

GW170817	•	GRB and X-rays: jet, cocoon or isotropic ejecta: origin, composition and geometry of different "components" remnant: compact (BH or NS) and extended (ejecta/ISM interaction)
Kilonovae		earn from diversity: binary mass (NS+NS, NS+BH) viewing angle

really zero EM emission ?

BH+BH

GW170817	 GRB and X-rays: jet, cocoon or isotropic ejecta: origin, composition and geometry of different "components" remnant: compact (BH or NS) and extended (ejecta/ISM interaction) 						
Kilonovae	learn from diversity:binary mass (NS+NS, NS+BH)viewing angle						
BH+BH	really zero EM emission ?						
Supernova	10 ⁻¹² - 10 ⁻⁷ M _{sun} c ²						

GW170817	 GRB and X-rays: jet, cocoon or isotropic ejecta: origin, composition and geometry of different "components" remnant: compact (BH or NS) and extended (ejecta/ISM interaction)
Kilonovae	learn from diversity:binary mass (NS+NS, NS+BH)viewing angle
BH+BH	really zero EM emission ?
Supernova	10 ⁻¹² - 10 ⁻⁷ M _{sun} c ²
Statistics	Reconcile GW event rates with astrophysical scenarios

Binary mergers

Binary mergers

	LOW [Mpc ³	HIGH Myr]	REF	D _{LIM}	O2 118 DAYS	FOUND	DLIM	O3 200 DAYS
NS+NS	0.01	10	Abadie 2010	78 Mpc	0.006-6	1	120 Mpc	0.04-40
NS+BH	6E-04	1	Abadie 2010	150 Mpc	0-0.6	0	240 Mpc	0.02-27
BH+BH	9E-03	0.24	Abbott 2016	900 Mpc	5-140	5/6	1Gpc 100 Mpc	12-320 0.02-0.5

Binary mergers

	LOW [Mpc ³	HIGH Myr]	REF	DLIM	O2 118 DAYS	FOUND	DLIM	O3 200 DAYS
NS+NS	0.01	10	Abadie 2010	78 Mpc	0.006-6	1	120 Mpc	0.04-40
NS+BH	6E-04	1	Abadie 2010	150 Mpc	0-0.6	0	240 Mpc	0.02-27
BH+BH	9E-03	0.24	Abbott 2016	900 Mpc	5-140	5/6	1Gpc 100 Mpc	12-320 0.02-0.5

Supernova

5 Kpc neutrino driven Gossan et al. 2016 50 Kpc rapidly rotating 5 Mpc extreme scenario (eg. collapsar) rate ~1/3 yr (~300yr for collapsar...)

Triggered GW search for very nearby events We (astronomers) need to provide accurate explosion time

Follow-up facilities for O3

Optical/IR

- search: VST, Schmidt Campo Imperatore & Asiago, REM
- candidate selection: ESO NTT, TNG, NOT, Asiago
- follow-up instruments: ESO-VLT, LBT

X-ray

• SWIFT, XMM, CHANDRA

RADIO

• SRT, EVN

Follow-up facilities for O3

Optical/IR

- search: VST, Schmidt Campo Imperatore & Asiago, REM
- candidate selection: ESO NTT, TNG, NOT, Asiago
- follow-up instruments: ESO-VLT, LBT

X-ray

• SWIFT, XMM, CHANDRA

RADIO • SRT, EVN

European collaboration for a joint proposal of all ESO-VTL units/instruments

Search for transients is "easy"

if we know where and what to search

Distilling the right source becomes the bottleneck

SOXS ON NTT SON OF X-SHOOTER NEWS SCIENCE INSTRUMENT TIMELINE TEAM DOCUMENTS MEETINGS INTERNAL DOCS

SOXS is built by an international consortium led by Italy and involving Israel, Chile, UK, Finland and Denmark.

Son Of X-Shooter

SOXS (Son Of X-Shooter) will be a unique spectroscopic facility for the ESO-NTT 3.5-m telescope in La Silla (Chile). The design foresees a high-efficiency spectrograph with a resolution-slit product of ~ 4,500, capable of simultaneously observing the complete spectral range 350 - 2000 nm with a good sensitivity, and with imaging capabilities in the visible band (ugrizY) over a 3'x3' field of view.

Instrument development page @ ESO (link) La Silla Instruments page @ ESO (link)

The SOXS logo has been created by a collaborative effort from Sergio Campana & Federica Loiacono

JWST 6.5m space telescope near-mid infrared

launch spring 2019

JWST 6.5m space telescope near-mid infrared

LSST 8.4m optical telescope 3.5 deg FoV

<image>

launch spring 2019

2023

10 million alerts, 1000 pairs of exposures, 15 Terabytes of data .. every night!

The four INAF cornerstones for the future of multi-wavelength observatories

The four INAF cornerstones for the future of multi-wavelength observatories

Because of the expected high number of triggers a network of dedicated, flexible small scale facilities are needed to distill the target for highly oversubscribed facilities

