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Outline
‣ Gravitational wave sources in the millihertz regime 
‣ LISA: a space-based gravitational wave observatory 
‣ LISA status and organisation 
‣ LISA scientific performances 
‣ Scientific Challenges  
‣ Conclusion and perspectives
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GW spectrum
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Supermassive black hole binaries
‣ Observations of Sgr A*, a dark massive object 

of 4.5x106 MSun at the centre of Milky Way. 
‣ Supermassive Black Hole are indirectly 

observed in the centre of a large number of 
galaxies (Active Galactic Nuclei). 

‣ Observations of galaxies mergers. 
→ MBH binaries should exist. 

‣ Observations of double AGN

NGC 6240 (Komossa et al. ApJ 582 L15)
Antennae galaxies 
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Supermassive black hole binaries
‣ GW emission: 3 phases: 

• Inspiral: Post-Newtonian, 
• Merger: Numerical relativity, 
• Ringdown: Oscillation of the                                                       

resulting MBH. 

‣ No full waveform but several approximations exist :  
• Phenomenological waveform, 
• Effective One                                                                               

Body, 
• …  

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016
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Supermassive black hole binaries

‣ Work from E. Barausse (IAP), A. 
Sesana (Univ. of Birmingham), M. 
Volonteri (IAP) et al. 

Gultekin 2009
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Figure 2.4: Gravitational wave signals from massive black hole binaries (MBHBs): (a) gravitational wave
energy (upper) and generic waveform (lower) for a massive black hole binary system illustrating the
successive inspiral, plunge, merge, and ringdown phases; (b) two simulated waveforms, illustrating how
the waveforms are highly sensitive to the binary system parameters, including the mass and spin of each
component, as well as the detailed orbit geometry; (c) in the currently favored cosmological model,
galaxies form in a hierarchical fashion, starting from small systems at early times, and then growing
via mergers: each galaxy observed today is a consequence of its merger history extending back to high
redshifts. If black holes formed at early times, they will have followed the merger hierarchy of their host
galaxies. Black hole mergers are therefore expected to be common events.
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Figure 2.5: Gravitational wave signals from ‘extreme mass ratio inspiral’ systems (EMRIs): (a) schematic
of the associated spacetime (Drasco & Hughes, 2006; Amaro-Seoane et al., 2013); (b) segments of generic
waveforms, showing the plus-polarised waves produced by a test mass orbiting a 106MØ black hole spin-
ning at 90 per cent of the maximal rate allowed by general relativity, at a distance D from the observer
(Drasco & Hughes, 2006; Amaro-Seoane et al., 2013). Top panel: slightly eccentric and inclined retro-
grade orbit modestly far from the horizon, in which the amplitude modulation is mostly due to Lense–
Thirring precession of the orbit plane. Bottom panel: highly eccentric and inclined prograde orbit closer
to the horizon, in which the more eccentric orbit produces sharp spikes at each pericentre passage.
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“M - σ relation”: the speed of stars in 
bulge is linked to the central MBH mass 

- Barausse MNRAS 
423,2533 (2012) 

- Klein et al. PRD PRD 
93,024003 (2016)
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Compact solar mass binaries
‣ Large number of stars are in binary system.  

‣ Evolution in white dwarf (WD) and neutron stars (NS). 
=> existence of WD-WD, NS-WD and NS-NS binaries 

‣ Estimation for the Galaxy: 60 millions. 

‣ Gravitational waves: 
• most part in the slow inspiral regime                                                          

(quasi-monochromatic): GW at mHz 
• few are coalescing: GW event of few                                                        

seconds at f > 10 Hz (LIGO/Virgo) 

‣ Several known system emitting around the mHz 
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EMRIs
‣ Capture of a “small” object by 

massive black hole (10 – 106 MSun) 
• Mass ratio > 200 
• GW gives information on the geometry 

around the black hole.  
• Test General Relativity in stong field 
• Frequency : 0.1 mHz to 0.1 Hz  
• Large number of source could be 

observed by space-based 
interferometer
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EMRIs
‣ Extreme Mass Ratio Inspiral: small compact objects (10 

MSun) orbiting around a SuperMassive Black Hole 
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EMRIs
‣ Extreme Mass Ratio Inspiral: small compact objects (10 

MSun) orbiting around a SuperMassive Black Hole 
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Black Hole Binaries
‣ LIGO/Virgo-type sources:   

binaries with 2 black 
holes of few tens solar 
masses. 

‣ During most part of the 
inspiral time, emission in 
the mHz band                                        
=> multi-observatories                               
GW astronomy

A. Sesana, PRL 116, 
231102 (2016)
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Cosmological backgrounds
‣ Variety of cosmological sources for stochastic background : 

• First order phase transition in the very early Universe 
• Cosmic strings network 
• …
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Unknown sources 
‣ High potential of discovery in the mHz GW band ?

?
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What can we learn ?
‣ The nature of gravity (testing the basis of general relativity) 

‣ Fundamental nature of black hole: existence of horizon, ... 

‣ Black holes as a source of energy, 

‣ Nonlinear structure formation: seed, hierarchical assembly, accretion, 

‣ Understanding the end of the life of massive stars, 

‣ Dynamic of galactic nuclei, 

‣ The very early Universe: Higgs TeV physics, topological defects, ... 

‣ Constraining cosmological models, 

‣ ... 
=> Expand the new observational window on the Universe (with all 
the unexpected !): looking at dark side of the Universe !
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LISA
‣ Laser Interferometer Space Antenna 
‣ 3 spacecrafts on heliocentric orbits and distant from          

2.5 millions kilometers 
‣ Goal: detect relative distance changes of 10-21: few picometers 

LISA| Slide 9 ESA UNCLASSIFIED – For Official Use  Systems 

ORBIT 

20° 

Orbit parameters 

Initial displacement angle (IDA) 20 deg 

Distance to earth 50-65 million km 

Arm length of constellation 2.5 million km 

Inclination of constellation wrt 
ecliptic 60 deg 

Corner angles 60 deg 

Round trip time for comms 433 s 

Earth azimuth and elevation 
during science 

Az=360 deg; El=-
9.35±3 deg 

Arm length variation ±35000 km 

Arm length variation rate <10 m/s 

Breathing angle ±0.9 deg 

Breathing angle rate 5 nrad/s 

• Three SC required in free flight forming an equilateral triangle, 
no actuation during science mode (except drag free control) 

• Low perturbations environment required to achieve 
performances and limit the constellation deformation and fuel 

• No need to keep rigid geometry, though range rate (Doppler) 
and breathing angle (optics/mechanisms) shall be limited 

• Long mission duration, minimum of 4 years of science 
operations 

• High data volume generated, remain in the vicinity of the 
Earth 
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LISA
‣ Interferometric measurements in several steps:                            

‣                   
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‣                   

LISA Payload| Slide 5 ESA UNCLASSIFIED – For Official Use - Privileged Configuration

LISA Payload 2 MOSA configuration
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LISA
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Concept Design - CAD

Optical Bench Sub-System

Ewan Fitzsimons
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LISA
‣ Interferometric measurements in several steps:                            

‣                   

LISA Payload| Slide 5 ESA UNCLASSIFIED – For Official Use - Privileged Configuration

LISA Payload 2 MOSA configuration

LISA Payload| Slide 6 ESA UNCLASSIFIED – For Official Use - Privileged Configuration

LISA Payload One MOSA, Baffle removed

LISA Payload| Slide 7 ESA UNCLASSIFIED – For Official Use - Privileged Configuration

LISA Payload One MOSA cross sectional view

(TM2→SC2) + (SC2→SC3) + (SC3→TM3) 

Concept Design - CAD

Optical Bench Sub-System

Ewan Fitzsimons
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LISA
‣ Spacecraft (SC) should only be sensible to gravity:  

• the spacecraft protects test-masses (TMs) from external forces 
and always adjusts itself on it using micro-thrusters 

• Readout:  
- interferometric (sensitive axis) 
- capacitive sensing
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LISAPathfinder
‣ Technological demonstrator for LISA

LISA :  
‣ Interferometric measurement along arm 1: 

(TM2→SC2) + (SC2→SC3) + (SC3→TM3) 

LISAPathfinder :  
Reduce distance TM-TM at 37cm

LISA Payload| Slide 7 ESA UNCLASSIFIED – For Official Use - Privileged Configuration

LISA Payload One MOSA cross sectional view

See talk from Daniele Vetrugno
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LISA
‣ Exchange of laser beam to form several interferometers 

‣ Phasemeter measurements on each of the 6 Optical Benches: 
• Distant OB vs local OB  
• Test-mass vs OB 
• Reference using adjacent OB 
• Transmission using sidebands 
• Distance between spacecrafts 

‣ Noises sources: 
• Laser noise : 10-13 (vs 10-21) 
• Clock noise (3 clocks)  
• Acceleration noise (see LPF) 
• Read-out noises 
• Optical path noises

Ch
ap

te
r2
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interferometer
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Test mass interferometer
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interferometer

Reference
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Figure 2.3: Interferometric measurement on one LISA satellite, exemplarily explained
for the horizontal OB. Light of a local laser (red) is used for transmission to the distant
S/C and to sense the space-time variation between for GW interaction. Simultaneously,
the light interfers on the local optical bench with the received weak light (wine red)
to form the science interferometer beatnote. The test mass motion is read out in the
TM interferometer using light (orange) from the adjacent optical bench transmitted
through a back-link fibre. The reference IFO directly compares local laser and adjacent
local laser. Moreover, the spacecraft is controlled by DFACS including TM position
readout and thruster actuation such that the S/C follows the test masses.

its variation due to GW is combined from three interferometric measurements:
TM-to-OB on the far spacecraft, OB-to-OB between sending and receiving S/C, and
OB-to-TM on the receiving spacecraft. This concept is called ‘split interferometry
configuration’ and we will come back to it in Sec. 2.5.

Laser light from the adjacent optical bench (orange) is used for the interferometric
TM readout. Since the benches are not rigidly connected to provide the angular
pointing flexibility of ±1¶ (Sec. 2.1.2), the OB-to-OB connection is established by
an extensile optical fibre. Laser light is transmitted through this so-called back-link

 © M. Otto, PhD thesis (2016)
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Figure 2.4: Complete LISA measurement principle. Each interferometric output is
fed into an anti-alias filter to suppress mirrored noise > 20 MHz and then into an
analog-to-digital converter, which is triggered from an ultra-stable oscillator providing
a time reference. The phase of the digitised data is determined to microcycle precision
in a phasemeter, low-pass filtered and downsampled and then transmitted to Earth
for further data processing and analysis.

and limiting the overall performance. Additionally, the ADCs on each S/C contribute
inherent jitter. Therefore, the inclusion of a pilot tone, i.e., a stable sinusoidal
reference signal derived from the USO, will be used for ADC jitter correction [Bar15].
In order to suppress the di�erential clock jitter of the three onboard USOs, a clock
tone transfer chain was proposed by [BTS+10] using sideband (SB) modulations
with amplified clock noise on the outgoing light. After defining one of the clocks as
a reference, these SB modulations yield su�cient data to completely remove the
clock noise and allow for correction of relative clock drifts in post-processing with
respect to one clock chosen as the master clock [WKB+13]. We will discuss this
issue in detail in Ch. 4.

 © M. Otto, PhD thesis (2016)
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LISA technology requirements 
‣ Free flying test mass subject to very low parasitic forces: 

๏ Drag free control of spacecraft (non-contacting spacecraft) 
๏ Low noise microthruster to implement drag-free 
๏ Large gaps, heavy masses with caging mechanism 
๏ High stability electrical actuation on cross degrees of freedom 
๏ Non contacting discharging of test-masses 
๏ High thermo-mechanical stability of spacecraft 
๏ Gravitational field cancellation 

‣ Precision interferometric, local ranging of test-mass and spacecraft: 
๏ pm resolution ranging, sub-mrad alignments 
๏ High stability monolithic optical assemblies 

‣ Precision million km spacecraft to spacecraft precision ranging: 
๏ High stability telescopes 
๏ High accuracy phase-meter 
๏ High accuracy frequency stabilization 
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LISA technology requirements 
‣ Free flying test mass subject to very low parasitic forces: 

✓ Drag free control of spacecraft (non-contacting spacecraft) 
✓ Low noise microthruster to implement drag-free 
✓ Large gaps, heavy masses with caging mechanism 
✓ High stability electrical actuation on cross degrees of freedom 
✓ Non contacting discharging of test-masses 
✓ High thermo-mechanical stability of S/C 
✓ Gravitational field cancellation 

‣ Precision interferometric, local ranging of test-mass and spacecraft: 
✓ pm resolution ranging, sub-mrad alignments 
✓ High stability monolithic optical assemblies 

‣ Precision million km spacecraft to spacecraft precision ranging: 
➡ High stability telescopes 
➡ High accuracy phase-meter and frequency distribution 
➡ High accuracy frequency stabilization (incl. TDI) 
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LISA data

GW sources 
- 10-100/yr SMBHBs 
- 10-1000/yr EMRIs 
- 60 millions Galactic binaries 
- Large number of Black Hole 
binaries 

- Cosmological backgrounds 
- Unknown sources

Corrections, calibrations

Resynchronisation (clocks)

Time-Delay Interferometry 
laser noise reduction

TDI data : 2 uncorrelated channels

GW data analysis

Catalog of GW sources 
with extracted waveforms

Phasemeters (carrier,  
sidebands, distance) 

+ Gravitational 
Reference  
Sensor  

+ Auxiliary channels 
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History of LISA
‣ 1978: first study based on a rigid structure (NASA) 
‣ 1980s: studies with 3 free-falling spacecrafts (US) 
‣ 1993: proposal ESA/NASA: 4 spacecrafts 
‣ 1996-2000: pre-phase A report 
‣ 2000-2010: LISA and LISAPathfinder: ESA/NASA mission 
‣ 2011: NASA stops => ESA continue: reduce mission 
‣ 2012: selection of JUICE L1 ESA 
‣ 2013: selection of ESA L3 : « The gravitational Universe » 
‣ 2015-2016: success of LISAPathfinder + detection GWs
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‣ 1978: first study based on a rigid structure (NASA) 
‣ 1980s: studies with 3 free-falling spacecrafts (US) 
‣ 1993: proposal ESA/NASA: 4 spacecrafts 
‣ 1996-2000: pre-phase A report 
‣ 2000-2010: LISA and LISAPathfinder: ESA/NASA mission 
‣ 2011: NASA stops => ESA continue: reduce mission 
‣ 2012: selection of JUICE L1 ESA 
‣ 2013: selection of ESA L3 : « The gravitational Universe » 
‣ 2015-2016: success of LISAPathfinder + detection GWs

Call for mission at ESA
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 The LISA Proposal
https://www.lisamission.org/

proposal/LISA.pdf

https://www.lisamission.org/proposal/LISA.pdf
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LISA science objectives
‣ SO1: Study the formation and evolution of compact binary stars 

in the Milky Way Galaxy. 

‣ SO2: Trace the origin, growth and merger history of massive 
black holes across cosmic ages 

‣ SO3: Probe the dynamics of dense nuclear clusters using EMRIs 

‣ SO4: Understand the astrophysics of stellar origin black holes 

‣ SO5: Explore the fundamental nature of gravity and black holes 

‣ SO6: Probe the rate of expansion of the Universe 

‣ SO8: Search for GW bursts and unforeseen sources
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LISA concept in the proposal
‣ 3 arms, 2.5 km  

‣ Launch Ariane 6.4 

‣ Propulsion:  
• micro-prop: cold gaz 
• prop. module 

‣ Frequency band: 

‣ Noise budget: 
• Acceleration => LISAPathfinder 

• Interferometric Measurement System
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Sensitivity
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Figure 2.3: Interferometric measurement on one LISA satellite, exemplarily explained
for the horizontal OB. Light of a local laser (red) is used for transmission to the distant
S/C and to sense the space-time variation between for GW interaction. Simultaneously,
the light interfers on the local optical bench with the received weak light (wine red)
to form the science interferometer beatnote. The test mass motion is read out in the
TM interferometer using light (orange) from the adjacent optical bench transmitted
through a back-link fibre. The reference IFO directly compares local laser and adjacent
local laser. Moreover, the spacecraft is controlled by DFACS including TM position
readout and thruster actuation such that the S/C follows the test masses.

its variation due to GW is combined from three interferometric measurements:
TM-to-OB on the far spacecraft, OB-to-OB between sending and receiving S/C, and
OB-to-TM on the receiving spacecraft. This concept is called ‘split interferometry
configuration’ and we will come back to it in Sec. 2.5.

Laser light from the adjacent optical bench (orange) is used for the interferometric
TM readout. Since the benches are not rigidly connected to provide the angular
pointing flexibility of ±1¶ (Sec. 2.1.2), the OB-to-OB connection is established by
an extensile optical fibre. Laser light is transmitted through this so-called back-link

Noises

Sensitivity

Response of the detector to GWs
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GW sources
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- 6 x107 galactic binaries 
- 10-100/year SMBHBs 
- 10-1000/year EMRIs 
- large number of Stellar Mass 
BH binaries (LIGO/Virgo) 

- Cosmological backgrounds 
- Unknown sources 
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LISA at ESA 
‣ 25/10/2016   : Call for mission 
‣ 13/01/2017   : submission of «LISA proposal» (LISA consortium)   
‣ 8/3/2017      : Phase 0 mission (CDF 8/3/17 → 5/5/17) 
‣ 20/06/2017   : LISA mission approved by SPC 
‣ 8/3/2017      : Phase 0 payload (CDF June → November 2017) 
‣ 2018→2020   : competitive phase A : 2 companies compete  
‣ 2020→2022   : B1: start industrial implementation 
‣ 2022-2024     : mission adoption 
‣ During about 8.5 years : construction 
‣ 2030-2034     : launch Ariane 6.4 
‣ 1.5 years for transfert 
‣ 4 years of nominal mission GW observations !
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ESA Phase 0 mission
‣ 13 Concurrent Design Facility from March to May 2017 

‣ Conducted by ESA with few members of the consortium 

‣ Drivers: thermal stability/range, mechanical stability, mass, 
power, data rate, volume, integration, … 

‣ Several studied options: 
• Propulsion: chemical (CP) / electrical (EP & EP+) 
• Micro-propulsion: cold-gas (CP & EP)/ electrical (EP+)  
• Communication, 
• Shape, 
• Launch strategies, orbits,  
• …

LISA| Slide 7 ESA UNCLASSIFIED – For Official Use  Systems 

 
 
 
 
 
 
 
 
 
 
 

• Spacecraft dispenser 

Spacecraft (SC) 

Mission Architecture 

Sciencecraft (SCC) 
Payload module (PM) Service Module (SVM) 

Propulsion module (PM) 
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ESA Phase 0 mission
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ESA Phase 0 Payload
‣ From June to November 
‣ Conducted by Payload Coordination Team with ESA  
‣ Support of ESA CDF 

=> Write the Payload Definition Document: 
• System requirements 
• Architecture 
• Budgets 
• Commissioning 
• Communications 
• Control 
• Critical items 
• Data 
• Electrical 
• Environment 

• Subsystems: 
• Laser 
• Diagnostics 
• Gravitational Reference Sensor 
• Mechanisms 
• Optical Bench 
• Telescope 
• Constellation Acquisition 

Sensor 
• PhaseMeter 
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LISA Consortium

‣ Set for eLISA/NGO and enlarge later 
‣ The LISA Consortium wrote the LISA proposal (core group) submitted it to ESA  
‣ Letter of endorsement from National Agencies to ESA
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Galactic binaries
‣ Gravitational wave: 

• quasi monochromatic 

‣ Duration: permanent 

‣ Signal to noise ratio: 
• detected sources: 7 - 1000 
• confusion noise from non-detected sources    

‣ Event rate:  
• 25 000 detected sources   
• more than 10 guarantied sources (verification binaries) 
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Galactic binaries

GW sources 
- 6 x107 galactic binaries 
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Super Massive Black Hole Binaries
‣ Gravitational wave: 

• Inspiral: Post-Newtonian, 
• Merger: Numerical relativity, 
• Ringdown: Oscillation of the                                                       

resulting MBH. 

‣ Duration: between few hours and several months 

‣ Signal to noise ratio: until few thousands 

‣ Event rate: 10-100/year 

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3
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Super Massive Black Hole Binaries

OG sources 
- 6 x107 galactic binaries 
- 10-100/year SMBHBs 

   



        Scientific Challenges with LISA -   A. Petiteau  -  GRASS - 1st March 201840

EMRIs
‣ Gravitational wave:  

• very complex waveform 
• No precise simulation at the moment 

‣ Duration: about 1 year 

‣ Signal to Noise Ratio: from tens to few hundreds 

‣ Event rate:                                                            
from few events per                                                                                                                                       
year to few                                                                
hundreds
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EMRIs

OG sources 
- 6 x107 galactic binariess 
- 10-100/year SMBHBs 
- 10-1000/years EMRIs 
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Cosmological backgrounds
‣Work in progress for LPF-LISA … 

‣ But studies done in the context of eLISA already showed: 
• Ex: first order phase transition in the very early Universe                             

Caprini et al.                                                                       
JCAP 04, 001                                                                        
(2016) 

• Cosmic strings                                                                    
network 

• …
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Others sources

GW sources 
- 6 x107 galactic binaries 
- 10-100/year SMBHBs 
- 10-1000/year EMRIs 
- large number of Stellar Origin 
BH binaries (LIGO/Virgo) 

- Cosmological backgrounds 
- Unknown sources 
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Others sources

GW sources 
- 6 x107 galactic binaries 
- 10-100/year SMBHBs 
- 10-1000/year EMRIs 
- large number of Stellar Origin 
BH binaries (LIGO/Virgo) 

- Cosmological backgrounds 
- Unknown sources 

?
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Scientific Challenges
‣ Gravitational Wave Science  

• Long waveforms 
• Waveforms for EMRIs 
• Waveforms for IMRIs 
• Multi-messenger => EM counterparts ? 
• Stochastic Background Modeling 
• Populations in particular SMBHs at very high redshift 
• Tests of GR 

‣ Data processing 
• Algorithms for multiple source extraction 
• Distributed Data Processing Centre 
• Flexibility for pipelines development and for their transfer in production 
• Taking into account instrumental artefacts (gaps, glitches, non-

stationarities, …)
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Scientific Challenges
‣ Efficient System Engineering for an highly integrated mission 
‣ Technologies: 

• Ultra-stable telescopes; 
• Complex phasemetre at high precision and frequency distribution; 
• Control and reduction of frequency noises; 
• Powerful and stable laser; 
• Fiber link (backlink); 
• Stray light; 
• Constellation acquisition; 
• Production of 6 Movable Optical Sub-Assembly; 
• … 

But no highly critical items!



        Scientific Challenges with LISA -   A. Petiteau  -  GRASS - 1st March 201846

Conclusion
‣ LISA will observe GWs between 10-5 and 1 Hz: 

• Large number of sources: compact objects binaries with large range 
of masses, stochastic backgrounds, …  

• Huge scientific potential: physic, astrophysics, cosmology, … 
‣ LISAPathfinder + detections from ground-based observatories   

=> Green light for LISA: large extension of the new window 
opened with LIGO/Virgo  
=> speed-up of the ESA planning: 
• Already done: call for mission, selection, phase 0 
• Next: phase A starting in April 2018… 

‣ A number of very interesting scientific challenges but nothing 
individually very critical … but highly integrated mission.



Thank you !
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LISAPathfinder
‣ Basic idea: Reduce one LISA arm in one SC. 

‣  LISAPathfinder is testing  : 
• Inertial sensor, 
• Drag-free and attitude control system 
• Interferometric measurement between 2 free-falling test-masses, 
• Micro-thrusters

See talk from Daniele Vetrugno
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