Massive stars as progenitors of merging black hole binaries

Nicola Giacobbo

Collaborators: Michella Mapelli, Mario Spera

1-2 March 2018

Introduction

Open question:

→ What are the formation mechanisms of binary black holes?

Purpose:

 \rightarrow to study the **demography** of **compact object binaries** in **different environments**.

Issue:

 \rightarrow most of current population-synthesis codes do not use recent stellar evolution models.

MOBSE (Massive Objects in Binary Stellar Evolution)

Updated version of the **most popular** and **used population synthesis code** (Hurley+ 2002).

BSE: includes obsolete stellar-evolution models:

- Tout+ 1997 for the stellar winds;
- Hurley+ 2000 for the supernova explosions (SNe).

MOBSE: major updates:

- recent stellar winds Vink+ 2001 and Gränefer+ 2011;
- new SNe Fryer+ 2012, Pulsation-Pair-Instability (PPISN) and Pair-Instability (PISN) Woosley 2017.

Upgrades: stellar winds

The **main differences** with respect to the **old recipes** for the stellar winds are:

Dependence on metallicity *Z* during **Wolf-Rayet** phase and **Luminous Blue Varible** stars:

$$\dot{M} \propto Z^lpha \,\, {\sf M}_\odot \,\, {\sf yr}^{-1}$$

$$\begin{cases} \alpha = 0.85 & \Gamma_{\rm e} < \frac{2}{3} \\ \alpha = 2.45 - 2.4 \, \Gamma_{\rm e} & \frac{2}{3} \le \Gamma_{\rm e} \le 1 \end{cases}$$

Effect of the electron - scattering **Eddington factor** on mass loss: (Chen+ 2015)

Upgrades: SNe models

Mass spectrum

BHBs Demography with MOBSE

Grid of initial conditions:

 $\label{eq:zero} \begin{array}{l} \mathsf{Z} \to \ 12 \ \text{metallicity} \in [0.02 - 0.0002]; \\ \\ \text{systems} \to \ 10^7 \ \text{for each metallicity}; \end{array}$

Distributions proposed by Sana+ 2012:

 $M_1 \rightarrow IMF$ of Kroupa+ 2001 in $M_1 \in [5-150]M_{\odot}$;

$$M_2 \rightarrow$$
 uniform distribution of $M_2 \in [0.1 - 1.0]M_1$;

$$e \rightarrow$$
 uniform distribution of $e^{-0.42} \in [0.0 - 1.0];$

 $P \rightarrow$ uniform distribution of $\log_{10}(P/day)^{-0.55} \in [0.15 - 5.5]$.

NG, M. Mapelli & M.Spera, 2018, MNRAS, 474, 2959

Mass BHBs

NG+ 2018

Common-Envelope

CE critical phase for the formation of compact object binaries.

Energy conservation formalism: $\alpha\lambda$

Merger per unit mass

 ${f f_{bin}=0.5}$ ightarrow we assume 50 per cent of binary ${f f_{IMF}=0.285}$ ightarrow we simulate only $M_1\geq$ 5 M $_{\odot}$

Merger per unit mass

Conclusions

- 1. \rightarrow the heaviest BHs (\sim 60 M $_{\odot}$) formed at Z \lesssim 0.002;
- 2. \rightarrow the most massive BHBs (\gtrsim 85 M $_{\odot}$) do not merge;
- → the masses of our merging BHBs match those of the five reported GW events;
- 4. \rightarrow merging BHBs form much more efficiently from metal-poor ($R_{\rm cor} \sim 10^{-4} \ M_{\odot}^{-1}$) than from metal-rich ($R_{\rm cor} \sim 10^{-7} \ M_{\odot}^{-1}$) binaries.

