

Constraining extreme matter with gravitational waves

Note: [LVC] = Plots/figures from LIGO&Virgo collaboration

The GW spectrum of binary neutron stars

- Faithful and **complete waveform model** (*inspiral+merger+postmerger*)
- Coverage of the **parameter space** (mass, spins, EOS, ...)
- Precise prediction of the merger remnant

What can we say about neutron star matter?

Different EOS → different star's structure

Binary neutron star mergers

Observing tidal effects in GWs tells us about the neutron star matter

Tides determine the wave's phase during merger

Observing tidal effects in GWs tells us about the neutron star matter

Observing tidal effects in GWs tells us about the neutron star matter

inspiral -> merger - postmerger

Methods for the GR 2-body problem

$$\begin{split} \partial_t \tilde{\Gamma}^i &= -2\,\tilde{A}^{ij}\,\partial_j \alpha + 2\,\alpha \left[\tilde{\Gamma}^i{}_{jk}\,\tilde{A}^{jk} - \frac{3}{2}\,\tilde{A}^{ij}\,\partial_j \ln(\chi) \right. \\ &\left. -\frac{1}{3}\,\tilde{\gamma}^{ij}\,\partial_j(2\,\hat{K} + \Theta) - 8\,\pi\,\tilde{\gamma}^{ij}\,S_j \right] + \tilde{\gamma}^{jk}\,\partial_j\partial_k\beta \\ &\left. + \frac{1}{3}\,\tilde{\gamma}^{ij}\partial_j\partial_k\beta^k + \beta^j\,\partial_j\tilde{\Gamma}^i - (\tilde{\Gamma}_d)^j\,\partial_j\beta^i \right. \\ &\left. + \frac{2}{3}\,(\tilde{\Gamma}_d)^i\,\partial_j\beta^j - 2\,\alpha\,\kappa_1\,\left[\tilde{\Gamma}^i - (\tilde{\Gamma}_d)^i\right], \right. \\ &\left. \partial_t\Theta = \frac{1}{2}\,\alpha\left[R - \tilde{A}_{ij}\,\tilde{A}^{ij} + \frac{2}{3}\,(\hat{K} + 2\,\Theta)^2\right] \\ &\left. - \alpha\left[8\,\pi\,\rho + \kappa_1\,(2 + \kappa_2)\,\Theta\right] + \beta^i\partial_i\Theta\,, \end{split}$$

GR Formulation and Cauchy problem + GR hydrodynamics

Coordinates and Singularities

Numerical relativity in a nutshell

Numerical methods for PDEs on adaptive grids

High-performance-computing (HPC)

Effective-One-Body

[Buonanno&Damour PRD 1999,2000]

- Includes test-mass limit (i.e. particle on Schwarzschild)
- Includes post-Newtonian and self-force results
- Uses resummation techniques \rightarrow predictive strong-field regime
- Includes tidal interactions (→ BNS) [Damour&Nagar PRD 2010]
- Flexible framework, can include NR results ("NR-informed")
- Most accurate framework to describe compact binary waveforms

See e.g. [Taracchini+ PRD 2014][SB+ PRL 2015][Nagar+ PRD 2015][Hinderer+ 2016]

Relativistic Tides

[Hinderer arXiv:0711.2420, Damour&Nagar arXiv:0906.0096, Binnington&Poisson arXiv:0906.1366]

$$k_2^T = 2\left[\frac{X_A}{X_B}\left(\frac{X_A}{C_A}\right)^5 k_2^A + \frac{X_B}{X_A}\left(\frac{X_B}{C_B}\right)^5 k_2^B\right]$$

[Damour&Nagar arXiv:0911.5041]

Tidal contribution to (post-) Newtonian dynamics and waveform:

Hamiltonian (Newtonian limit):

$$\begin{array}{l} H_{\rm EOB} \approx Mc^2 + \frac{\mu}{2} \left({\bf p}^2 + A(r) - 1 \right) \\ A(r) = 1 - 2/r - \kappa_2^T(\lambda_2)/r^6 \\ & \text{Tides are attractive and "act" at small separations} \\ & \text{Tidal coupling constant} \\ \end{array}$$
Waveform:

$$h \sim Af^{-7/6}e^{-i\Psi(f)} \approx Af^{-7/6}e^{-i\Psi_{PP}(f) + i39/4\kappa_2^T x(f)^{5/2}}$$

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism

One parameter to characterize merger dynamics

[SB,Nagar,Balmelli,Dietrich,Ujevic PRL 112 (2014)]

Predict energy emitted in GW for all binaries, range 1-2% M (all possible EOS, masses, mas-ratios)

Predict energy emitted for given binary by specifying solely the kappa value

Tidal polarizability coef. (I=2)

First waveform model for inspiral → merger

[SB,Nagar,Dietrich,Damour PRL 114 (2015)]

- Effective-one-body model with tides, GSF Resummed approach [Bini+ 2014]
- Valid from low frequencies to merger, PREDICT the merger waveform
- Accuracy: uncertainties of the numerical data (improve simulations!)

See [Hinderer+ PRL 116 (2016)] for an alternative approach

Closed-form tidal approximants PN+EOB+NR

[Dietrich, SB, Tichy PRD 96 121501 (2107)]

Fast, flexible, accurate

Used for GW170817 analysis

Inspiral - merger -> postmerger

Remnant HMNS is the loudest GW phase

[Zappa, SB, Radice, Perego, Dietrich arxiv:1712.04267]

[SB, Radice, Ott, Roberts, Moesta, Galeazzi PRD94 024023 (2016)]

Compact binaries are the most luminous events

[Zappa, SB, Radice, Perego, Dietrich arxiv:1712.04267]

- Simple description of all simulated BNS based on tidal parameter
- Estimate for GW170817:

•

 $9.896 \times 10^{54} \mathrm{erg/s} \lesssim L_{\mathrm{peak}} \lesssim 4.940 \times 10^{56} \mathrm{~erg/s}$

Remnant HMNS is the loudest GW phase

[SB, Radice, Ott, Roberts, Moesta, Galeazzi PRD94 024023 (2016)]

Simulations w/ microphysics & neutrinos

Upper limit on total energy emitted

[Zappa, SB, Radice, Perego, Dietrich arxiv:1712.04267]

- Merger energy simple description based on tidal parameter [SB+ PRL 2014]
- Upper limit on total energy \rightarrow postmerger is not detectable by LIGO/Virgo
- BBH events ~ 1-3 Msun c^2

Inspiral - merger -> postmerger

Peak frequency correlates to κ_{2}^{T}

[SB, Dietrich, Nagar PRL 115 091101 (2015)]

Large NR dataset (~100, 3 codes) [Hotokezaka+ arXiv:1307.5888, Takami+ arXiv:1403.5672]

- Conceptually "compatible" with inspiral-merger (cf. TEOB)
- Postmerger frequencies essentially dependend on *merger* physics

One-armed instability

• m=1, Generic: single stars, supernovae cores, eccentric mergers

e.g. [...,Paschalidis, East+ 2015 arXiv:1511.01093, Radice+, arXiv:1603.05726, Lehner+ arXiv:1605.02369]

Not an efficient GW emitter

[Radice, SB, Ott, arXiv:1603.05726]

Inspiral-triggered search might improve [Lehner+ arXiv:1605.02369]

Detector	Binary	SNR	$\mathrm{SNR}_{2,1}$	$SNR_{2,2}^{f \ge 1 \text{ kHz}}$
Adv. LIGO	MS1b-M135-Q1	169.4	1.6	5.4
Adv. LIGO	SLy-M135-Q1	169.5	0.1	6.9
ET	MS1b-M135-Q1	2460.5	14.4	47.4
\mathbf{ET}	SLy-M135-Q1	2461.6	1.0	61.3

Merger remnant reaches extreme densities

Can GW observations inform us about EOS changes at those densities?

- Baryon number density n ~ 3-5 n_{nuc}
- Extra DOF/phase transitions?
- Specific model: Λ-hyperons

[Banik+ arxiv:1404.6173]

Microphysical EOS compatibile with astro and nuclear phys constraints

In general: "softness" effects

GWs could probe such "softness effects"

[Radice, SB, Del Pozzo, Ott, Roberts ApJL (2017)]

log(Bayes factor) vs. Source distance

- Postmerger GW morfology contains unique info
- Detailed and generic models are necessary for DA studies
- High-freq. GW challenging to detect (\rightarrow Einstein telescope)

Joint constraint on the neutron star equation of state from multimessenger observations

• GW analysis → upper bound on Lambda

Summary

- Unique info about extreme matter
- But GW measurements require precise waveform models
- Inspiral \rightarrow merger : EOS constraints from tidal parameters
- Detailed waveforms with tidal and spin interaction (urgent!)
- Merger \rightarrow postmerger : explore even higher density regime
- Modeling is simplistic and not ready, but target is 3G

Exploring the BNS parameter space

- 130 BNS, 330 dataset
- Multiple resolutions
- Multiorbits + post merger
- Variation of input physics

Largest exploration of parameter space in strong-field regime available to date

[Bernuzzi+ PRL (2015), Dietrich+ PRD91 (2015), SB+ PRD94 (2016), Radice+ PRD94 (2016), SB&Dietrich PRD94 (2016), Dietrich+ PRD95 024029 (2017), Radice+ ApJL 842 (2017),]

Postmerger spectrum

Postmerger spectrum: peak frequency

[Bauswein+ arxiv:1006.3315]

- Various models associating f₂ to isolated equil. star properties
- Conceptually indepedent on inspiral-merger models
- Possibility to extract "EOS-related info" (R_x, M_{max},...)

[Bauswein+ arXiv:1106.1616, Hotokezaka+ arXiv:1307.5888, Takami+ arXiv:1403.5672, Clark+ arXiv:1509.08522, ...]

Example of other emission channels: One-armed spiral instability

[Radice, SB, Ott, arXiv:1603.05726]

- **m=1** dynamical instability; long-term (>~50 ms)
- Generic, e.g. single stars, supernovae cores, eccentric mergers. See e.g. [Paschalidis, East+ 2015 arXiv:1511.01093] [Lehner+ arXiv:1605.02369]
- Not an efficient GW emitter, although persistent

One-armed spiral instability: difficult detection

[Radice, SB, Ott, arXiv:1603.05726]

- Hybrid complete waveform from 10 Hz: effective-one-body with tides (TEOBResum) + long-term high-resolution NR data
- Full SNR analysis, optimal source orientation
- Inspiral-triggered search might improve [Lehner+ arXiv:1605.02369]

Detector	Binary	SNR	$\mathrm{SNR}_{2,1}$	$SNR_{2,2}^{f \ge 1 \text{ kHz}}$
Adv. LIGO	MS1b-M135-Q1	169.4	1.6	5.4
Adv. LIGO	SLy-M135-Q1	169.5	0.1	6.9
ET	MS1b-M135-Q1	2460.5	14.4	47.4
ET	SLy-M135-Q1	2461.6	1.0	61.3

Publicly available hybrid waveforms https://zenodo.org/record/46733#.VvCC7CaR4II