GW optical counterpart search in the Multi-Messenger Astronomy Era

Aniello Grado INAF-Napoli INFN –Napoli & GRAWITA team

INAF OA Roma: E. Brocato (P.I.), L.A. Antonelli, S. Ascenzi, P. Casella, G. Israel, G. Iannicola, M. Lisi, S. Piranomonte, L. Pulone, L. Stella, A. Stamerra, V.Testa

INAF OA Napoli: A. Grado, M Botticella, M. Capaccioli, M. della Valle, F. Getman, L. Limatola, P. Schipani

INAF OAS Bologna: L. Nicastro, L. Amati, A. Bulgarelli, M. Dadina, G. De Cesare, N. Masetti, E. Palazzi, A. Rossi, D. Vergani

INAF OA Milano: S. Campana, S. Covino, P. D'Avanzo, A. Melandri, G. Tagliaferri

INAF OA Padova: E. Cappellaro, S. Benetti, L. Tomasella, M. Turatto, S. Yang

GSSI: M. Branchesi

University of Urbino: G. Greco, G. Stratta

SNS Pisa: B. Patricelli, M. Razzano

ASI Science Data Center: V. D'Elia, G. Giuffrida, S. Marinoni, P. Marrese

Multi-wavelengths Facilities Network

Visible: VST, LBT, TNG, NOT (coll.), NTT, VLT + small telescopes [REM, 1.82m (Asiago, IT), 1.52m (Loiano, IT), 0.9m C. Imperatore, IT)] + HST (coll.) Near-mid IR: 1.1m AZT-24 (C. Imperatore,IT), IRAIT (Antarctica) Radio: 64m SRT (Cagliari, IT), 2x 32m (Medicina and Noto, IT) High energy (coll.): space(Swift, Chandra, XMM) + ground (coll. MAGIC, future ASTRI, CTA)

Collaborations: ePESSTO, INTEGRAL, AGILE Positive interactions during O1+O2: Pan-Starrs, iPTF, VISTA, HST

GWs from compact objects

What? How far? How many? Where?

Source type	Detectors s O3 (N	_	Estimated # of detections in O3 (in 12 months)	localization
NS-NS	120-170 65-85	(LIGO) (Virgo)	0.04-120 ¹	1-4 % in 5 deg ² 12-21 % in 20 deg ²
NS-BH	190-270 100-140	(LIGO) (Virgo)	0.04-4.4 ^{3,4}	~ BNS
BBH	1110-1490 610-1030	(LIGO) (Virgo)	6 - 130 ²	Tens to hundreds deg ²

Abbott et al 2017 arXiv:1304.0670

¹Assuming a rate of 10⁻⁸ - 10⁻⁵ Mpc⁻³ yr⁻¹ (Abbott et al. 2017, PRL, 119, 161101) ²Rodriguez et al. 2016, PRD, 93,8, 084029 (rate 2-20 Gpc⁻³yr⁻¹) ³Assuming an upper limit rate of 3.6x10⁻⁶ Mpc⁻³ yr⁻¹ ⁴Pannarale et al. 2014 ApJ, 791, 5

Optical counterpart search problem statement

- Sky error area (3 detectors): 30-100 deg²
- For BNS absolute magnitude ~ -16 mag
- Alert within tens of minutes (with human vetting)
- We want to find OC candidates as soon as possible for further spectroscopic follow-up

Two approaches:

- Targeted search
- blind search

White et al. 2011

- Efficient search requires:
 - Reference catalogs/images
 - Elimination of fore- and back-ground events (multi-epochs full sky surveys)

Observational strategy

We need a complete galaxies catalog GWGC (white 2011) complete up to 40 Mpc for M_B=-15 mag Small to moderate Error area + far source

20 deg² error area ~200 Mpc define a volume with ~ 500 galaxies L > 0.1 x L_{*} (L_{*} ~ luminosity of Milky Way)

Schmidt telescope Campo Imperatore

Schmidt Telescope (65/91/183 cm) Camera Apogee CG16M 4096x4096px FoV = $1.15^{\circ} \times 1.15^{\circ} = 1.3 \text{ deg}^2$ Pixel scale = 1.01 arcsec/pxFiltri : Sloan u', g', r', i', z' Mag limite r'=21.5 in 5x90s (SNR=3)

REM (Rapid Eye Mount) telescope

... and an Optical Camera: ROS2

- 0.58" pixel scale
- ~ 10' × 10' FoV
- 4000 9500 Å (*g* ', *r* ', *i* ', *z* ')

4 channels simultaneously observed

r ~ 19 in 10 s, SNR ~ 10

A. Grado GRASS 2018 Padova 2018-03-01

Simultaneous observations

g', r, 'i', z' + 1 NIR band

VST optical follow-up of gravitational waves

Two companion programs on GTO time (in reward of telescope and camera construction):

- On VST-GTO: PI A. Grado
- On OmegaCam-GTO: E. Cappellaro

We start with a negotiation with ESO to have the VST in Target of Opportunity (ToO) mode.

Since P95 (1 April-30 Sept 2015) ToO and follow-up programs.

Up to now allocated 240h on these surveys

VST in a nutshell

Located on Paranal Chile In operation since October 2011

Primary mirror: 2.6m
1.46 deg corrected FoV (Ø)
80% EE in 0.4"

Camera OmegaCam

268 Mpixel 1°x1° FoV
0.21 arcsec/pixel
32 scientific CCDs + 4 outer CCDs

GW follow-up Data Flow

 The pipeline is checking every 10 minutes if new data with a specified

PROG-ID appears on the ESO archive

- From Paranal to Garching archive:
 - Time after which 75% of the file are received: 6.3 min
 - Time after which 90% of the file are received: 8.3 min
- If available the data are downloaded
- When a pointing is completed and available on local storage the pipeline starts the processing
- If the pointing has been already processed (in a previous epoch) the final mosaic will be pixel registered on the previous one (for image subtraction)
- ~ 10 min to get a fully calibrated coadded image ready for analysis (from when we have the data locally).

GW150914 EM sky coverage

24 observatories involved !! 19 orders of magnitude in frequency space + neutrino search IceCube/ Antares (+/- 500s) LVC-EM, APJL,826,1 L13,2016 Antares,IceCube, LVC, Phys. Rev. D93 122010,2016

First event GW150914

Blocks of 3x3 deg² 2x40 s dithered images (to fill ccds mosaic gaps) **90 deg² in 6 epochs** (over 2 months) 29% of the localization probability for cWB sky map enclosed 10% considering the LALinference sky map (shared with observers on 2016 January 13)

Pointings obtained with GWsky (Greco et al. in preparation)

VST survey performance

A. Grado GRASS 2018 Padova 2018-03-01

Data from Abbott et al 2016

Second event GW151226

72 deg² in 6 epochs

First obs 7.6 hours after the alert and 1.9 days after the merger event (GCN Grado et al. 2015).

9% of the initial BAYESTAR sky map and 7% of the LALinference sky map

EM counterpart search: a very tough task

Find ONE transient in the GW error area. For the first two events 90% enclosed prob. ~ 200-1000

deg²

- 10-50 SN
- > 100 AGN

• Thousand of variable stars

In 1 deg² ~ 300k sources !!

• Thousand of asteroids

Transients search in Grawita

Two complementary pipeline for transients search

diff-pipe images subtraction (Cappellaro et al. 2015)

PRO: deeper (with good seeing, transients detected up to r=22 mag AB), for crowded fields, source embedded in extended objects; CON: slow, more sensible to images defects

phot-pipe (S. Covino) comparison among epochs in catalog space

PRO: fast;

CON: shallower, missing transients in extended sources...

Results for GW150914 event

	Diff-pipe	Phot-pipe
Initial number of sources in all epochs	9,000,000	9,000,000
Initial # of candidates	170,000	54,239
Total # of transients	8,000	939
# known variables 🤇	6722	1
# of known SN in the field/detected	4/4	
# new SN candidates	7	

Brocato et al. 2018 MNRAS, 474, 411

Evident spurious and known variables already removed

VSTJ57.77559-59.13990 SN Ib/c candidate possibly associated with Fermi-GBM GRB 150827A

SN candidates in the GW150914 VST follow-up

Results for GW151226 event

0,000 0 7	~ 900,000 4500
7	
	305
	1
$\mathbf{\Sigma}$	
.7	
1	

Spurious and known variables already removed

~ 80% of the initial bayestar map

GW170814

Diff-pipe found 495 optical transients Phot-pipe found 230 optical transients

A. Grado et al. in preparation

SN candidate from the VST search in GW170814

The watershed

NGC4993@ VST

Abbott et al. 2017, PRL, 119, 1101

GW170817 timeline

12:41:04 UTC **GW** event: First skymap: 17:54:51 UTC 31 deg² (90% credibility) centered on 12h57^m -17°51' **VST observations** of GW170817: 23:18:42 UTC covering 9 deg² Swope OT observation: 23:33 UTC (targeted survey) GCN21529 **Updated** skymap: 23:54:40 UTC 34 deg² (90% credibility) centered on 13h09^m -25°37'

0.015

0.010

0.005

⊃ 0.000

-0.005

-0.010

Smoothed residuals of isophotal elliptical fit

NGC 4993 r filter

At +6.4 days: 200 s in g,r,i,z filters 23.3, 22.4, 21.3, no visible in z (GCN 21703 A. Grado et al.)

At +14.4 days: 1200 s in i filter **No detection** (22.53 mag 50% complet. for pointlike surces) (GCN 21833 A. Grado et al.)

At +108 days: 4320 s in g,i filters **No detection** (25.0 and 24.5 50% complet. For pointlike sources) (GCN 22368 A. Grado et al.)

O3 and beyond

- We foresee to allocate time at VST up to P107 (sept 2021)
 - **50** hours/semester on VST-GTO
 - ~30 hours/semester on OmegaCam-GTO

In ~4 hours we cover 90 deg² 2x40s dithered exposures. **BLIND SEARCH**

Assuming 6 epochs we can observe from ~2.5 (90 deg²) to ~8 events (30deg²)/semester

We will focalize on GW from BNS and nearby (~100 -200 Mpc) BBH and NS-BH if any

Conclusion

- The multi-messenger Astronomy is started
- GW optical follow-up has an important role
 - Lesson learned: very important to have as soon as possible a refined map
- GRAWITA has expertise and facilities to face the search of optical counterparts
- We can do both wide area and blind search
- With VST we plan to follow (six epochs distributed over 2 months) ~ 2.5 to 8 events/ semester

