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o Optical cavities 3 = 1-R/L
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o tffect of the cavity on the atomic transitions

o How do the cavity parameters affect the transitions?
o Are there optimal values?
o How does the order of the process come nto play?

o Cown we set interferometer constraints based on the
Fve'rfarmawﬁe of the caviby?
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o tffect of the cavity on the atomic transitions

o Cavilty "pushes” the interactions to ¢ There is an optimal photon Lifebime,
the Braqq and channeling regimes, above which the minimum interaction
and AwaY from the Raman-Nakh and time ncreases Linearly,
quasi-Bragg zowne. => the transitions become adiabatic.

¢ The order of the process males the
intensity/duration variation over the
optinmal photon Lifetime more steep.

N\

Bragg channeling

3
e
[
)
£
-+
-
QO
-
O
©
—
)
—+
£

Raman-Nath

|

0.04 0.06 0.08 0.10 '
Input laser intensity Q/w, '




o tffect of the cavity on the atomic transitions
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Cavities have an optimal photon Lifetime or bandwidth for
Braqq diffraction,

It depends on the order of diffraction, higher orders have
more acube Emﬁems&v/dur&&wm changes around the turning
FOME

> Taking that as a design Limik, we can derive temperature
Limiks based own:

@ Having a geometrically stable confiquration.
o Achieving a certain level of spatial filkering.

for atom Ev\%@.wferome&rv and W detection,



Fubure worle

e Previous work only 1D (constrain on
beam quality introduced by optical
suppression of HOMs)

¢ Future modelling work to include
full-3D wavefront model (constrain on
beam guality introduced b3 target
E‘M&Qraferomegrw contrast)

o Currently developing a four-mirror
large-waist cavity with a total Gouy
phase shift close to 1¥0 degrees.
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