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atom interferometry in a vertical atomic fountain. Loading
the atoms in the cavity along the optical axis means that the
time between pulses of the interferometric sequence is only
limited by the free fall time in the atomic fountain.

THEORY

We present the fundamental results of the theory of atomic
Bragg di↵raction in the framework of semiclassical atom-field
interactions [8–11]. In this framework we treat the atom as
a quantum system and the interaction potential as a classi-
cal field. We are interested in the regime where the interac-
tion time is short enough that the initial velocity spread of the
atoms can be neglected, but long enough to obtain e�cient
population transfer to the excited state. E.g. if the pulse dura-
tion is on the order of (n!r )�1, where !r is the recoil energy
procured by the atom, its frequency linewidth will be in the or-
der of n!r and thus a velocity spread on the order of the recoil
velocity or smaller would not be resolved. Add information
about how this initial velocity spread condition translates into
temperature. Preparation of atoms at a fraction of this temper-
ature is feasible in current atomic fountains [12]. Past works
have referred to this regime as the quasi-Bragg regime [11].

Consider an atom of mass M being scattered by a standing
wave of light travelling in the z direction. We treat the atom
as a two state system in coordinate representation, with state
vector given by

| (t)i = g(z, t) |gi + e(z, t) |ei . |0i |2n~ki (3)

where we denote with |gi and |ei the ‘ground’ and ‘excited’
states of the atom respectively. The field is treated as quasi-
monochromatic with frequency ! and slowly varying ampli-
tude E0(r ), and can be written in the general form:

E (r , t) = ẑE0(r ) f (t) cos
⇥
!t + k · r + �(r )

⇤
, (4)

where k is the wavevector of the field and f (t) is the smooth
envelope function describing the temporal profile of the field.
For such a field, the Rabi frequency will be a time-varying
quantity given by the same envelope function

⌦0(t) = ⌦̄0 f (t). (5)

The atom-field interaction Hamiltonian in the frame rotat-
ing at the laser frequency, setting the zeroth of energy to the
energy of state |gi, and neglecting the e↵ects of spontaneous
emission, is [8]

H =
p2

2M
�~� |ei he|+~⌦̄0 f (t) cos(kz)( |ei hg |+ |gi he|) (6)

where � ⌘ ! � !0 is the atom-field detuning from the atomic
transition |gi ! |ei. Denoting the time derivatives of the state
amplitudes of |gi and |ei by ġ(z, t) and ė(z, t) respectively, we
invoke the Shcrödinger equation on the wavefunction given

in 3 and the Hamiltonian given in 6 and obtain a pair of cou-
pled di↵erential equations for the state amplitudes:

iġ(z, t) = � ~
2

2M
@2g(z, t)
@z2 + ~⌦̄0 f (t) cos(kz)e(z, t). (7)

iė(z, t) = � ~
2

2M
@2e(z, t)
@z2 + ~⌦̄0 f (t) cos(kz)g(z, t)

� ~�e(z, t) (8)

For detunings much larger than the linewidth of the excited
state (� � ⌦̄0) and if the atoms are prepared initially in the
ground state (g(z,0) = 1, e(z,0) = 0), the excited state can be
adiabatically eliminated. Setting the derivatives of the ampli-
tude of the excited state to zero in equation 8, we can obtain
an approximate form for e(z, t) in terms of g(z, t):

e(z, t) ⇡ ⌦̄0

�
f (t) cos(kz)g(z, t) (9)

Substituting this into equation 7, we obtain:

i~ġ(z, t) = � ~
2

2M
@2g(z, t)
@z2 + ~

⌦̄2
0
�

G(t) cos2(kz)g(z, t) (10)

where we have defined the envelope function of the field in-
tensity G(t) = [ f (t)]2. This is a Mathieu equation that has no
analytical solution in general. The periodicity of the interac-
tion potential allows us to look for approximate solutions by
applying the Bloch theorem and expanding g(z, t) on a new
basis of solutions having constant momentum:

g(z, t) =
+1X

m=�1
gm (t)eimkz . (11)

The state of the atom is thus defined as an infinite super-
position of Bloch waves |g,m~ki ⌘ |mi with amplitudes
gm (t)eimkz . Substitution into equation 10 gives:

i~
+1X

m=�1
ġm (t)eimkz = (12)

~!r

+1X

m=�1
m2gm (t)eimkz

+ ~
⌦̄2

0
�

G(t) cos2(kz)
+1X

m=�1
gm (t)eimkz (13)

where we have defined the recoil frequency as:

!r =
~k2

2M
. (14)

The cosine squared now acts as a 2-photon momenta kick op-
erator:

cos2(kz) =
1
2
+

1
4

e2ikz +
1
4

e�2ikz (15)

) cos2(kz) |mi = 1
2
|mi + 1

4
|m + 2i + 1

4
|m � 2i (16)

2

atom interferometry in a vertical atomic fountain. Loading
the atoms in the cavity along the optical axis means that the
time between pulses of the interferometric sequence is only
limited by the free fall time in the atomic fountain.

THEORY

We present the fundamental results of the theory of atomic
Bragg di↵raction in the framework of semiclassical atom-field
interactions [8–11]. In this framework we treat the atom as
a quantum system and the interaction potential as a classi-
cal field. We are interested in the regime where the interac-
tion time is short enough that the initial velocity spread of the
atoms can be neglected, but long enough to obtain e�cient
population transfer to the excited state. E.g. if the pulse dura-
tion is on the order of (n!r )�1, where !r is the recoil energy
procured by the atom, its frequency linewidth will be in the or-
der of n!r and thus a velocity spread on the order of the recoil
velocity or smaller would not be resolved. Add information
about how this initial velocity spread condition translates into
temperature. Preparation of atoms at a fraction of this temper-
ature is feasible in current atomic fountains [12]. Past works
have referred to this regime as the quasi-Bragg regime [11].

Consider an atom of mass M being scattered by a standing
wave of light travelling in the z direction. We treat the atom
as a two state system in coordinate representation, with state
vector given by

| (t)i = g(z, t) |gi + e(z, t) |ei . |0i |2n~ki (3)

where we denote with |gi and |ei the ‘ground’ and ‘excited’
states of the atom respectively. The field is treated as quasi-
monochromatic with frequency ! and slowly varying ampli-
tude E0(r ), and can be written in the general form:
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• GW detection with AI in an OC
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• Cavity length/finesse changes will 
transform the landscape in the 
parameter space of the interaction.
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• Effect of the cavity on the atomic transitions

• Cavity “pushes” the interactions to 
the Bragg and channeling regimes, 
and away from the Raman-Nath and 
quasi-Bragg zone.
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•  There is an optimal photon lifetime, 
above which the minimum interaction 
time increases linearly. 
=> the transitions become adiabatic.

•  The order of the process makes the 
intensity/duration variation over the 
optimal photon lifetime more steep.



• Effect of the cavity on the atomic transitions

Time

0

T

2T

He
ig

ht

0 TimeT 2T

On-axis Perpendicular

M
ax

im
um

 c
lo

ud
 te

m
pe

ra
tu

re
 (K

)

Cavity length (m)

 B
ea

m
 w

ai
st

 (m
m

)

1

10

0

0.9

0.99

0.999

0.9999

g-
fa

ct
or

102

103

104

105

Fi
ne

ss
e

0.1 1 10 100 1000
10−9

10−8

10−7

10−6

10−5

10−4

gmax = 0.999
Smax = 0.02

Δωmin = 16 kHz

(a)

(b)

(c)

(d)

On-axis (1/10 of length)On-axis (full length)

Perpendicular (250 ms)

Perpendicular (100 ms)

Ca
vit

y 
le

ng
th

Waist 
increase

Same 
waist

Te 
M�L

2⇡kBt2
cot

✓
1

2

arccos

p
g
max

◆

Te /
Mc�

⇡2kBt2�!
min

S
maxp

1� S2

max

L
max

=

p
3c

2⇡�!
min

S
maxp

1� S2

max

Lgeo

opt

=
cS

max

⇡�!
min

s
g
max

� 1

S2

max

� 1

Geometrical limit

Optical limit

Forbidden region

(e)

Geometrical limit: 

g ≤ gmax 

Optical limit: 

 SO1,SO2 ≤ Smax 
 ∆w ≥ ∆wmin



Cavities have an optimal photon lifetime or bandwidth for 
Bragg diffraction. 

It depends on the order of diffraction, higher orders have 
more acute intensity/duration changes around the turning 
point. 

Taking that as a design limit, we can derive temperature 
limits based on: 

Having a geometrically stable configuration. 

Achieving a certain level of spatial filtering. 

Cavities are great for atom interferometry and GW detection.



• Previous work only 1D (constrain on 
beam quality introduced by optical 
suppression of HOMs) 

• Future modelling work to include 
full-3D wavefront model (constrain on 
beam quality introduced by target 
interferometric contrast) 

• Currently developing a four-mirror 
large-waist cavity with a total Gouy 
phase shift close to 180 degrees.

Future work
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