

Exploiting Neutron Star mergers with a network of advanced gravitational-wave detectors

<u>Matteo Di Giovanni</u>

LIGO-Virgo Collaboration

GRASS 2018

Padova 01-02/03

The last LIGO-Virgo science run provided an unprecedented result.

PRL 119, 161101 (2017)	Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS	week ending 20 OCTOBER 2017
	ŝ	

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^4 years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{\odot} , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range $1.17-1.60 M_{\odot}$, with the total mass of the system $2.74^{+0.04}_{-0.01}M_{\odot}$. The source was localized within a sky region of 28 deg² (90% probability) and had a luminosity distance of 40^{+8}_{-14} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

DOI: 10.1103/PhysRevLett.119.161101

The joint gravitational and electromagnetic observations provide insight into astrophysics, dense matter, gravitation and cosmology.

GW170817 sets an upper limit for BNS mergers at 1540^{+3200}_{-1220} Gpc⁻³yr⁻¹ and the masses (low spin priors) are in the range **1.17-1.60 M_{sun}**.

This observation is coincident in time and location with **GRB170817A** and optical transient **SSS17A** from galaxy NGC4993.

Emissions across all EM spectrum (UV, X-rays, Radio)

At **44 Mpc**, this is the closest GW event observed so far.

APJ 848-2 (2017)

Image credits: Ryan Foley and 1M2H team

Using EM counterparts, BNS mergers can be used as standard sirens for the measurement of H_0 . Nature 24471 (2017)

$$d_{NGC 4993} = 41.1 \pm 5.8 Mpc$$

$$d_{GW} = 43.8^{+2.9}_{-6.9} Mpc$$

$$\downarrow$$

$$v_{H} = 3017 \pm 166 \frac{km}{s}$$

$$H_{0}^{GW} = \frac{v_{H}}{d} = 70^{+12}_{-8} \frac{km}{sMpc}$$

$$H_{0}^{GW} = 73.24 \pm 1.74 \frac{km}{sMpc}$$

$$H_{0}^{SWres} = 73.24 \pm 1.74 \frac{km}{sMpc}$$

$$H_{0}^{SWres} = 73.24 \pm 1.74 \frac{km}{sMpc}$$

$$H_{0}^{SWres} = 73.24 \pm 1.74 \frac{km}{sMpc}$$

The fate of a Binary Neutron Star

Delayed collapse: (2 - 4 kHz)

- Hypermassive NS (10 100 ms)
- Stable NS (100 10⁵ s)

Prompt collapse to BH (6 - 7 kHz)

What can GWs tell us? - Neutron Stars

What can GWs tell us? - Neutron Stars

The phase evolution is driven mainly by the tidal deformability

Constraints on EOS stiffness

Inspiral

 $\simeq k_2 \left(\frac{R}{r}\right)^5$

If NS are spinning there is another EOS-dependent effect scaling as

Harry & Hinderer - arXiv:1801.09972v1

$$\simeq \frac{\mathcal{Q}S^2}{r^2}$$

What can GWs tell us? - Neutron Stars

h(t)

Post-Merger spectrum will The present at least 3 strong peaks.

 f_1, f_2, f_3

 $f_2 \simeq \frac{(f_1 + f_3)}{2}$

Mode couplings may give rise to a fourth peak dubbed:

Frequency peaks in PM

PRD 93 - 124051 (2016)

Takami, Rezzolla, Baiotti PRD 91 - 064001 (2015)

 f_{2-0}

Compactness, radius, ecc...

Drawbacks

- BNS mergers are extremely difficult to model
- Wide parameter space
- Possible unexpected and un-modeled physics

Inadequate templates can lead to a potential loss of signal and/or information (e.g. most models take into account lowspinning BNS only).

Procedures not relying on models are needed.

LIGO/Virgo Data Analysis: transients

TEMPLATE SEARCHES

Find template that fits data best (matched filtering)

Confident detection and PE

Need exact source model, may fail if models don't match Nature

BURST SEARCHES

Minimal or no assumptions on source waveform and parameters

Can search for un-modeled and unexpected sources

≻Limited parameter estimation

Both suitable for low latency analysis.

Low latency pipelines

Un-modeled burst search pipelines (PRD.93.122004)

- Coherent WaveBurst (cWB <mark>Klimenko et al. arXiv 1511.05999)</mark>
- oLIB (Omicron + LIB Lynch et al. arXiv 1511.05955)
- cWB + BayesWave (van der Sluys et al. CQG 32(13):135012)

13

What is cWB?

Triggers are analyzed coherently to estimate the signal waveform and parameters using a constrained likelihood method (maximization over sky position loop)

(Klimenko et al. PRD 72:122002, 2005).

GW170817

Post-Merger analysis

APJ 851 - 1 (2017)

No constrains possible.

Estimated PM energy is: $E_{GW} = 3.265 M_{\odot}c^2$

For short duration signals (<1s), cWB has a lower limit of.

 $4.8M_{\odot}c^2$

Best upper limit:

 $1kHz < f_{GW} < 4kHz$

 $h_{rss}^{50\%} = 2.1 \times 10^{-22} H z^{-1/2}$

For intermediate duration signals (<500s):

Bar-mode model (cWB - STAMP):

Magnetar model (STAMP)

$$h_{rss}^{50\%} = 5.9 \times 10^{-22} H z^{-1/2} \qquad E_{GW} = 2M_{\odot}c^2$$

 $h_{rss}^{50\%} = 8.4 \times 10^{-22} H z^{-1/2} \qquad E_{GW} = 4M_{\odot}c^2$

Can we observe a PM signal with current sensitivities?

Sensitivity not enough yet

The post merger falls in a frequency region where the detectors are not sensitive enough or not calibrated.

We can only set upper limits on the signal.

Conclusions

- At 40 Mpc even a matched-filter search would have a SNR of less than 2.
- At design sensitivity, matched filter with precisely modelled PM could detect merger remnants between 20 and 40 Mpc with a reasonable SNR.
- Theoretical uncertainties make un-modelled searches important.

The End

Matteo Di Giovanni

LIGO-Virgo Collaboration

GRASS 2018

Padova 01-02/03