Gravitational Waves: a theoretical primer

Valeria Ferrari

SAPIENZA
università di roma

Gravitational waves: foundations and beyond Physics Department, Sapienza University of Rome January 16th 2018

Some basic facts about general relativity: the role of the metric

 tensor is twofold:1) $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$
```
it allows to compute the distance between spacetime points, i.e. it describes the geometrical properties of the spacetime
```

2) $g_{\mu \nu}$ is the generalisation of the Newtonian potential (it follows from the equivalence principle), therefore it describes the gravitational field

Gravitational waves as a perturbation of a flat spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll\left|\eta_{\mu \nu}\right|
$$

We need to solve Einstein's equations for the perturbation $h_{\mu_{2}}$

Einstein's equations

$$
\begin{array}{r}
G_{\mu \nu}=\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\right) \quad \text { Einstein } t \\
T_{\mu \nu} \quad \begin{array}{l}
\text { energy-momentum tensor } \\
\text { source of the perturbation }
\end{array}
\end{array}
$$

Alternative way of writing Einstein's equations

$$
R_{\mu \nu}=\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

$$
\begin{gathered}
\Gamma_{\beta \mu}^{\gamma}=\frac{1}{2} g^{\gamma \alpha}\left[g_{\alpha \beta, \mu}+g_{\alpha \mu, \beta}-g_{\beta \mu, \alpha}\right] \quad, \alpha \equiv \frac{\partial}{\partial x^{\alpha}} \\
R_{\beta \mu \nu}^{\alpha}=\Gamma_{\beta \nu, \mu}^{\alpha}-\Gamma_{\beta \mu, \nu}^{\alpha}-\underline{\Gamma}_{{ }_{\kappa \nu} \Gamma^{\kappa}{ }_{\beta \mu}+\Gamma^{\kappa}{ }_{\kappa \mu} \Gamma^{\kappa}{ }_{\beta \nu}}
\end{gathered}
$$

non linear part

This is the form of Einstein's eqs we are going to use

Christoffel symbols

Riemann tensor

$$
R_{\mu \nu}=g^{\alpha \beta} R_{\alpha \mu \beta \nu}, \quad R=g^{\mu \nu} R_{\mu \nu}
$$

Ricci tensor and scalar curvature

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll\left|\eta_{\mu \nu}\right|
$$

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll\left|\eta_{\mu \nu}\right|
$$

$$
\Gamma_{\beta \mu}^{\gamma}=\frac{1}{2} \eta^{\gamma \alpha}\left[h_{\alpha \beta, \mu}+h_{\alpha \mu, \beta}-h_{\beta \mu, \alpha}\right]+O\left(h^{2}\right)
$$

$$
\begin{aligned}
& R_{\mu \nu}=\frac{\partial}{\partial x^{\alpha}} \Gamma^{\alpha}{ }_{\mu \nu}-\frac{\partial}{\partial x^{\nu}} \Gamma^{\alpha}{ }_{\mu \alpha}+\underbrace{\Gamma^{\alpha}{ }_{\sigma \alpha} \Gamma^{\alpha}{ }_{\mu \nu}-\Gamma^{\alpha}{ }_{\sigma \nu} \Gamma^{\sigma}{ }_{\mu \alpha}}_{\text {non linear part }} \\
& \text { Einstein's equations }
\end{aligned}
$$

$$
R_{\mu \nu}=\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

$$
\begin{aligned}
&\left\{\square_{F} h_{\mu \nu}-\left[\frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}} h_{\nu}^{\lambda}+\frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\nu}} h_{\mu}^{\lambda}-\frac{\partial^{2}}{\partial x^{\mu} \partial x^{\nu}} h_{\lambda}^{\lambda}\right]\right\} \\
&=-\frac{16 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} T\right)
\end{aligned}
$$

$$
\square_{F}=\eta^{\alpha \beta} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial x^{\beta}}=-\frac{\partial^{2}}{c^{2} \partial t^{2}}+\nabla^{2}
$$

Maxwell's equations written for the vector potential

$$
\square_{F} A_{\alpha}-\frac{\partial^{2} A^{\beta}}{\partial x^{\alpha} \partial x^{\beta}}=-\frac{4 \pi}{c} J_{\alpha}
$$

but we know that $\quad A_{\alpha}^{\prime}=A_{\alpha}+\frac{\partial \Phi}{\partial x^{\alpha}} \quad$ is still a solution $\begin{aligned} & \text { and if we choose the scalar function } \\ & \phi \text { such that }\end{aligned} \quad \frac{\partial}{\partial x^{\beta}} A^{\beta}=0$

Lorenz gauge

$$
\square A_{\alpha}=-\frac{4 \pi}{c} J_{\alpha}
$$

$$
\left\{\begin{aligned}
&\left\{\square_{F} h_{\mu \nu}-\left[\frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\mu}} h_{\nu}^{\lambda}+\frac{\partial^{2}}{\partial x^{\lambda} \partial x^{\nu}} h_{\mu}^{\lambda}-\frac{\partial^{2}}{\partial x^{\mu} \partial x^{\nu}} h_{\lambda}^{\lambda}\right]\right\} \\
&=-\frac{16 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} T\right)
\end{aligned}\right.
$$

our gauge freedom: diffeomorfism invariance

$$
x^{\mu \prime}=x^{\mu}+\epsilon^{\mu}(x) \quad \epsilon_{\mu, \nu}=O(h)
$$

harmonic gauge condition

$$
g^{\mu \nu} \Gamma_{\mu \nu}^{\lambda}=0
$$

$$
\frac{\partial}{\partial x^{\mu}} h_{\nu}^{\mu}=\frac{1}{2} \frac{\partial}{\partial x^{\nu}} h_{\mu}^{\mu}
$$

$$
\left\{\begin{array}{l}
\square_{F} h_{\mu \nu}=-\frac{16 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} T\right) \\
\frac{\partial}{\partial x^{\mu}} h^{\mu}{ }_{\nu}=\frac{1}{2} \frac{\partial}{\partial x^{\nu}} h^{\mu}{ }_{\mu},
\end{array}\right.
$$

$$
\begin{gathered}
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h \\
\left\{\begin{array}{l}
\square_{F} \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \\
\frac{\partial}{\partial x^{\mu}} \bar{h}^{\mu}{ }_{\nu}=0,
\end{array}\right.
\end{gathered}
$$

A perturbation of a flat spacetime propagates as a wave travelling at the speed og fight

$$
\begin{gathered}
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h \\
\left\{\begin{array}{l}
\square_{F} \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \\
\frac{\partial}{\partial x^{\mu}} \bar{h}^{\mu}{ }_{\nu}=0,
\end{array}\right.
\end{gathered}
$$

$$
\bar{h}_{\mu \nu}(t, \mathbf{x})=\frac{4 G}{c^{4}} \int_{V} \frac{T_{\mu \nu}\left(t-\frac{|\mathbf{x}-\mathbf{y}|}{c}, \mathbf{y}\right)}{|\mathbf{x}-\mathbf{y}|} d^{3} y
$$

The retarded potential solution automatically satisfies $\frac{\partial}{\partial x^{\mu}} \bar{h}^{\mu}{ }_{\nu}=0$
the harmonic gauge condition

In vacuum $\mathrm{T}_{\mu \nu}=0$

$$
\left\{\begin{array}{l}
\square_{F} \bar{h}_{\mu \nu}=0 \\
\frac{\partial}{\partial x^{\mu}} \bar{h}_{\nu}^{\mu}=0
\end{array}\right.
$$

plane wave solution

$$
\bar{h}_{\mu \nu}=\Re\left\{A_{\mu \nu} e^{i k_{\alpha} x^{\alpha}}\right\} \quad \begin{array}{ll}
A_{\mu \nu} & \text { polarization } \\
k_{\alpha} & \text { wave vector }
\end{array}
$$

let us assume that a progressive wave is traveling along the x-direction

$$
\left(-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right) \bar{h}_{\nu}^{\mu}=0 \quad \text { where } \quad \bar{h}_{\nu}^{\mu}=\bar{h}_{\nu}^{\mu}\left(t-\frac{x}{c}\right)
$$

the harmonic gauge condition gives

$$
\frac{\partial \bar{h}^{\mu}{ }_{\nu}}{\partial x^{\mu}}=0 \quad \longrightarrow \quad \bar{h}^{t}{ }_{\nu}=\bar{h}^{x}{ }_{\nu}
$$

i.e.

$$
\begin{array}{ll}
\bar{h}_{t}^{t}=\bar{h}_{t}^{x}, & \bar{h}_{y}^{t}=\bar{h}_{y}^{x} \\
\bar{h}_{x}^{t}=\bar{h}_{x}^{x}, & \bar{h}_{z}^{t}=\bar{h}_{z}^{x}
\end{array}
$$

The harmonic gauge condition $\frac{\partial}{\partial x^{\mu}} \bar{h}^{\mu}{ }_{\nu}=0$
remains satisfied if we make an infinitesimal coordinate transformation

$$
x^{\mu \prime}=x^{\mu}+\epsilon^{\mu}(x) \quad \text { provided } \quad \square_{F} \epsilon^{\mu}=0
$$

we can choose ε^{μ} to put 4 constraints on the components of $h_{\mu \nu}$

$$
\bar{h}_{x}^{t}=\bar{h}_{y}^{t}=\bar{h}_{z}^{t}=0, \quad \bar{h}_{y}^{y}+\bar{h}_{z}^{z}=0
$$

this constraint + the relations among the components of $h_{\mu \nu}$ previously derived

$$
\begin{array}{ll}
\bar{h}_{t}^{t}=\bar{h}_{t}^{x}, & \bar{h}_{y}^{t}=\bar{h}_{y}^{x} \\
\bar{h}_{x}^{t}=\bar{h}_{x}^{x}, & \bar{h}_{z}^{t}=\bar{h}_{z}^{x}
\end{array}
$$

$$
h_{\mu \nu}^{T T}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & h_{y y} & h_{y z} \\
0 & 0 & h_{y z} & -h_{y y}
\end{array}\right)
$$

Plus (+) polarization $h_{y y}=-h_{y y}$ Cross (x) polarization $h_{y z}=h_{z y}$

This gauge is said TT(transverse, traceless)- gauge
In the tt-gauge $\quad \bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h \quad$ and $\quad h_{\mu \nu} \quad$ are the same
how gravity affects the relative motion of neighbouring particles?

$$
\frac{D^{2} \delta x^{\mu}}{d \tau^{2}}=R_{\alpha \beta \gamma}^{\mu} u^{\alpha} u^{\beta} \delta x^{\gamma}
$$

geodesic devitation
$\mathrm{R} \mu_{\alpha \beta \gamma} \quad$ is the Riemann tensor
$\mathrm{u}^{\alpha} \quad$ is the particle four-velocity
assuming the particles are at rest before the wave arrives, and that the Riemann tensor is computed to first order in $h_{\mu \nu}$

$$
\frac{d^{2}}{d t^{2}} \delta x^{i}=\frac{1}{2} \eta^{i j} \frac{\partial h_{j m}^{T T}}{\partial t^{2}} \delta x^{m} \quad \longrightarrow \delta x^{i}=\delta x_{0}^{i}+\frac{1}{2} \eta^{i j} h^{T T}{ }_{j k} \delta x_{0}^{k}
$$

if the wave travels along x

$$
\begin{aligned}
& h_{\mu \nu}^{T T}=\left(\begin{array}{cccr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & h_{y y} & h_{y z} \\
0 & 0 & h_{y z} & -h_{y y}
\end{array}\right) \quad \begin{array}{c}
\text { Plus }(+) \text { polarization } \\
\text { hyy }=-h_{y y} \neq 0 \\
\ldots . . .
\end{array} \\
& \text { Cross (x) polarization } \\
& h_{y z}=h_{z y} \neq 0 \\
& h_{y y}=h_{+} e^{i \omega\left(t-\frac{x}{c}\right)} \\
& h_{y z}=h_{\times} e^{i \omega\left(t-\frac{x}{c}\right)}
\end{aligned}
$$

Wave generation: the slow motion approximation

general solution

$$
\bar{h}_{\mu \nu}(t, \mathbf{x})=\frac{4 G}{c^{4}} \int_{V} \frac{T_{\mu \nu}\left(t-\frac{|\mathbf{x}-\mathbf{y}|}{c}, \mathbf{y}\right)}{|\mathbf{x}-\mathbf{y}|} d^{3} y
$$

$$
t_{r e t}=t-\frac{|\mathbf{x}-\mathbf{y}|}{c}
$$

Take the Fourier transform

$$
\bar{h}_{\mu \nu}(\omega, \mathbf{x})=\int_{V} d^{3} y T_{\mu \nu}(\omega, \mathbf{y}) \frac{e^{i \omega \frac{\mathbf{x}-\mathbf{y} \mid}{e}}}{|\mathbf{x}-\mathbf{y}|}
$$

source
if the source is isolated
λ is the wavelenght of the emitted radiation, and $\frac{\omega}{c}=\frac{1}{\lambda}$

$$
|\mathbf{y}|<\epsilon, \quad \epsilon=\text { source size }
$$

if we assume that λ is much larger than the source size

$$
\lambda \gg \epsilon \rightarrow \frac{c}{\omega} \gg \epsilon \rightarrow \frac{\omega \epsilon}{c} \ll 1 \quad \frac{\omega \mathbf{y}}{c} \ll 1 \quad \begin{aligned}
& \text { i.e. the typical velocities are much } \\
& \text { smaller than the speed of light }
\end{aligned}
$$

$$
\frac{e^{i \omega \frac{|\mathbf{X}-\mathbf{y}|}{c}}}{|\mathbf{x}-\mathbf{y}|} \sim \frac{e^{i \omega \frac{r}{c}}}{r} \quad|\mathbf{x}| \equiv r \quad \quad \bar{h}_{\mu \nu}(\omega, \mathbf{x})=\frac{4 G}{c^{4}} \frac{e^{i \omega \frac{r}{c}}}{r} \int_{V} T_{\mu \nu}(\omega, \mathbf{y}) d^{3} y
$$

finally, reverting to the time domain

$$
\bar{h}_{\mu \nu}(t, r)=\frac{4 G}{c^{4} r} \int_{V} T_{\mu \nu}\left(t-\frac{r}{c}, \mathbf{y}\right) d^{3} y
$$

However, to compute the emitted wave we do not need to know all the components of the stress-energy tensor:

Conservation of energy and momentum $\frac{\partial T^{\mu \nu}}{\partial x^{\nu}}=0 \quad \int_{V} T^{\mu 0} d^{3} y=$ const $\rightarrow \quad \bar{h}^{\mu 0}=$ const

$$
q^{k n}(t)=\frac{1}{c^{2}} \int_{V} T^{00}(t, \mathbf{y}) y^{k} y^{n} d^{3} y
$$

$$
\left\{\begin{array}{l}
\bar{h}^{\mu 0}=0, \quad \mu=0 . .3 \\
\bar{h}^{i k}(t, r)=\frac{2 G}{c^{4} r}\left[\frac{d^{2}}{d t^{2}} q^{i k}\left(t-\frac{r}{c}\right)\right]
\end{array}\right.
$$

$q^{k n}$ quadrupole moment
T^{00} source energy density

NOTE THAT:

$$
\frac{4 G}{c^{4}} \sim 8 \cdot 10^{-50} s^{2} / g \mathrm{~cm}!!!
$$

finally, reverting to the time domain

$$
\bar{h}_{\mu \nu}(t, r)=\frac{4 G}{c^{4} r} \int_{V} T_{\mu \nu}\left(t-\frac{r}{c}, \mathbf{y}\right) d^{3} y
$$

However, to compute the emitted wave we do not need to know all the components of the stress-energy tensor:

Conservation of energy and momentum

$$
\frac{\partial T^{\mu \nu}}{\partial x^{\nu}}=0 \quad \int_{V} T^{\mu 0} d^{3} y=\text { const } \rightarrow \quad \bar{h}^{\mu 0}=\text { const }
$$

$$
q^{k n}(t)=\frac{1}{c^{2}} \int_{V} T^{00}(t, \mathbf{y}) y^{k} y^{n} d^{3} y
$$

$q^{k n}$ quadrupole moment
T^{00} source energy density

NOTE THAT:

unlike em waves, no dipole radiation (conservation of total momentum)

$$
\vec{d}_{e m}=\sum_{i} q_{i} \vec{r}_{i} \quad \vec{d}_{g}=\sum_{i} m_{i} \vec{r}_{i}
$$

In order to emit gravitational waves, a system must possess a certain degree of asymmetry

In conclusion

Gravitational waveform in the weak field, slow-motion approximation

$$
\left\{\begin{array}{l}
\bar{h}^{\mu 0}=0, \quad \mu=0 . .3 \\
\bar{h}^{i k}(t, r)=\frac{2 G}{c^{4} r}\left[\frac{d^{2}}{d t^{2}} q^{i k}\left(t-\frac{r}{c}\right)\right]
\end{array}\right.
$$

$$
q^{k n}(t)=\frac{1}{c^{2}} \int_{V} T^{00}(t, \mathbf{y}) y^{k} y^{n} d^{3} y \quad \begin{array}{ll}
q^{k n} & \text { quadrupole moment } \\
T^{00} & \text { source energy density }
\end{array}
$$

Luminosity of a gravitational wave source
$L_{G W}=\frac{d E_{G W}}{d t}=\frac{G}{5 c^{5}}\left\langle\sum_{k n=1}^{3} \dddot{Q}_{k n}\left(t-\frac{r}{c}\right) \dddot{Q}_{k n}\left(t-\frac{r}{c}\right)\right\rangle \quad Q_{j k} \equiv q_{j k}-\frac{1}{3} \delta_{j k} q$
reduced quadrupole moment

$$
\left\{\begin{array}{l}
\bar{h}^{\mu 0}=0, \quad \mu=0 . .3 \\
\bar{h}^{i k}(t, r)=\frac{2 G}{c^{4} r}\left[\frac{d^{2}}{d t^{2}} q^{i k}\left(t-\frac{r}{c}\right)\right]
\end{array}\right.
$$

2) compute the quadrupole components

$$
T^{00}=c^{2} \sum_{n=1}^{2} m_{n} \delta\left(x-x_{n}\right) \delta\left(y-y_{n}\right) \delta(z)
$$

binary system in circular orbit

$$
q^{k n}(t)=\frac{1}{c^{2}} \int_{V} T^{00}(t, \mathbf{y}) y^{k} y^{n} d^{3} y \quad \begin{aligned}
& q^{k n} \\
& T^{00}
\end{aligned} \begin{aligned}
& \text { quadrupole moment } \\
& \text { source energy density }
\end{aligned}
$$

I) the equation of motion

$$
\begin{array}{rr}
x_{1}=\frac{m_{2}}{M} l_{0} \cos \omega_{K} t & x_{2}=-\frac{m_{1}}{M} l_{0} \cos \omega_{K} t \\
y_{1}=\frac{m_{2}}{M} l_{0} \sin \omega_{K} & y_{2}=-\frac{m_{1}}{M} l_{0} \sin \omega_{K} t \\
\omega_{K}=\sqrt{\frac{G M}{l_{0}^{3}}} & \begin{array}{l}
l_{0}=r_{1}+r_{2} \\
M=m_{1}+m_{2}
\end{array}
\end{array}
$$

$$
q_{x x}=\frac{\mu}{2} l_{0}^{2} \cos 2 \omega_{K} t+\text { cost }
$$

$$
q_{y y}=-\frac{\mu}{2} l_{0}^{2} \cos 2 \omega_{K} t+\operatorname{cost} 1 \quad \mu=\frac{m_{1} m_{2}}{M}
$$

$$
q_{x y}=\frac{\mu}{2} l_{0}^{2} \sin 2 \omega_{K} t
$$

3) compute the waveform

$$
\begin{aligned}
& h_{i j}(t, r)=-\frac{h_{0}}{r} A_{i j}\left(t-\frac{r}{c}\right) \quad A_{i j}(t)=\left(\begin{array}{ccc}
\cos 2 \omega_{K} t & \sin 2 \omega_{K} t & 0 \\
\sin 2 \omega_{K} t & -\cos 2 \omega_{K} t & 0 \\
0 & 0 & 0
\end{array}\right) \\
& h_{0}=\frac{4 \mu M G^{2}}{l_{0} c^{4}} \quad \text { instantaneous wave amplitude } \quad \begin{array}{l}
\text { waves are emitted at twice the } \\
\text { orbital frequency }
\end{array}
\end{aligned}
$$

The binary radiates energy in gravitational waves

$$
L_{G W}=\frac{d E_{G W}}{d t}=\frac{G}{5 c^{5}}\left\langle\sum_{k, n=1}^{3} \dddot{Q}_{k n}\left(t-\frac{r}{c}\right) \dddot{Q}_{k n}\left(t-\frac{r}{c}\right)\right\rangle \quad Q_{j k} \equiv q_{j k}-\frac{1}{3} \delta_{j k} q
$$

reduced quadrupole moment
using the components of ${ }^{q_{x x}}=\frac{\mu}{2} l_{0}^{2} \cos 2 \omega_{K} t+\operatorname{cost}$ the quadrupole moment $q_{y y}=-\frac{\mu}{2} l_{0}^{2} \cos 2 \omega_{K} t+\operatorname{cost} 1$ we just computed

$$
\begin{aligned}
& L_{G W}=\frac{32}{5} \frac{G^{4}}{c^{5}} \frac{\mu^{2} M^{3}}{l_{0}^{5}} \\
& \quad \mu= \\
& \quad \text { the orbital energy is } \\
& E_{\text {orb }}=E_{K}+U=-\frac{1}{2} \frac{G \mu M}{l_{0}}
\end{aligned}
$$

$$
\frac{d E_{o r b}}{d t}+L_{G W}=0
$$

$$
l_{0}^{3} \frac{d l_{0}}{d t}=-\left[\frac{64}{5} \frac{G^{3}}{c^{5}} \mu M^{2}\right]
$$

$$
l_{0}(t)=l_{0}^{i n}\left[1-\frac{t}{t_{c}}\right]^{1 / 4}
$$

$$
\begin{aligned}
& t_{c}=\frac{5}{256} \frac{c^{5}}{G^{3}} \frac{\left(l_{0}^{i n}\right)^{4}}{\mu M^{2}} \text { time to coalescence } \\
& l_{0}^{i n}=\text { orbital distance at } \mathrm{t}=0
\end{aligned}
$$

the orbital frequency increases in time
and consequently, the orbital period $\quad T_{K}=\frac{2 \pi}{\omega_{K}}$
decreases

First indirect proof of the existence of gravitational waves: Nobel Prize in 1993
J.M.Weisberg, J.H.Taylor Relativistic Binary Pulsar PSRI913+16:Thirty Years of Observation in Binary Radio Pulsars ASP Conference series, 2005 eds. F.A.A. Rasio, I.H.Stairs

$$
\begin{array}{ll}
& t_{c}=\frac{5}{256} \frac{c^{5}}{G^{3}} \frac{\left(l_{0}^{i n}\right)^{4}}{\mu M^{2}} \text { time to coalescence } \\
l_{0}^{i n}=\text { orbital distance at } \mathrm{t}=0 \\
l_{0}^{i n} \\
l_{0}=r_{1}+r_{2}
\end{array}
$$

The wave amplitude increase as well

$$
h_{0}(t)=\frac{4 \pi^{2 / 3} G^{5 / 3} \mathcal{M}^{5 / 3}}{c^{4}} \nu_{G W}^{2 / 3}(t)
$$

$$
\nu_{G W}(t)=\frac{2 \omega_{K}}{2 \pi}=\frac{1}{\pi} \sqrt{\frac{G M}{l_{0}^{3}(t)}}
$$

gravitational wave frequency

$$
\mathcal{M}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \quad \text { chirp mass }
$$

$$
\begin{aligned}
& h_{i j}(t, r)=-\frac{h_{0}}{r} A_{i j}\left(t-\frac{r}{c}\right) \quad A_{i j}(t) \\
& h_{0}=\frac{4 \mu M G^{2}}{l_{0} c^{4}} \quad \text { instantaneous wave amplitude }
\end{aligned}
$$

Normalized amplitude
LIGO-Hunlord
Chirp

$$
\nu_{G W}(t)=\frac{2 \omega_{K}}{2 \pi}=\frac{1}{\pi} \sqrt{\frac{G M}{l_{0}^{3}(t)}}
$$

wave frequency

$$
\nu_{G W}(t)=\frac{1}{\pi} \sqrt{\frac{G M}{l_{0}^{3}(t)}}=\frac{5^{3 / 8}}{8 \pi}\left(\frac{c^{3}}{G \mathcal{M}}\right)^{5 / 8}\left[\frac{1}{t_{c}-t}\right]^{3 / 8}
$$

chirp mass

$$
\mathcal{M}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}}=\frac{c^{3}}{G}\left[\frac{5}{96} \pi^{-8 / 3} \nu^{-11 / 3} \dot{\nu}\right]^{3 / 5}
$$

measuring the wave frequency and its time derivative, we measure the chirp mass

What do we infer from the chirp mass?

$$
M=m_{1}+m_{2}
$$

over 0.2 s the wave frequency increases from 35 to 150 Hz , from which we infer that, just before merging, the distance bewteen the two masses was

$$
d_{o r b}(150 H z) \simeq 339 \mathrm{~km}
$$

The two objects must be extremely compact!

Are they Black Holes?
coalescing black holes

signal emitted during the merging: to be found by solving numerically Einstein's equations in the non linear regime

Ringdown: part of the signal emitted by the final black hole, which oscillates in its proper modes: the Quasi-Normal-Modes (QNM)

To identify the source we need:
I) improve the description of the inspiralling part of the signal near merging
2) compute the signal emitted during the merging and match it with the inspiralling part
3) compute the ringing tail and match it with the merging part of the signal

1) Modelling the inspiral: Post-Newtonian expansion beyond the quadrupole approximation Systems with (relatively) weak gravitational fields \& low velocities: dynamics of GR expressed as Newton's laws + corrections, using quantities and concepts of Newtonian physics!
if $\quad g^{\alpha \beta} \quad$ is a solution of Einstein's eqs. $\quad G^{\alpha \beta}=\frac{8 \pi G}{c^{4}} T^{\alpha \beta} \quad$ then the tensor

$$
\begin{array}{r}
h^{\alpha \beta}=\eta^{\alpha \beta}-\sqrt{-g} g^{\alpha \beta} \quad \text { satisfies the equations } \quad \begin{array}{c}
\square_{F} h^{\alpha \beta}=-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}(T, h) \\
\tau^{\alpha \beta} \text { is an effective energy-momentum } \\
\text { pseudo-tensor }
\end{array}
\end{array}
$$

WARNING: $\quad h^{\alpha \beta}$ is not a perturbation!

we expand the solutions as

$$
h^{\alpha \beta}=\sum_{n} \epsilon^{n} h_{n}^{\alpha \beta} \quad \text { Expansion parameter: } \quad \varepsilon \sim \frac{v}{c} \sim \sqrt{\frac{G M}{r c^{2}}}
$$

and find the expansion coefficients iteratively

$$
h_{0}^{\alpha \beta}=0, \quad \square_{F} h_{n}^{\alpha \beta}=-\frac{16 \pi G}{c^{4}} \tau^{\alpha \beta}\left[T, h_{n-1}\right]
$$

several mathematical subtleties: different expansions in near zone and wave zone to be matched, regularization procedures (some approaches use techniques similar to field theory), etc....
if we use this approach, compute the waveform for the inspiralling going beyond the quadrupole approximation, and take the Fourier transform of the signal

$$
h(f)=\mathcal{A}(f) e^{i \psi(f)} \quad \psi(f)=\psi_{P P}+\psi_{\bar{Q}}+\psi_{\bar{\lambda}} \quad x=(v / c)^{2} \rightarrow \frac{1}{c^{2}(G m \pi f)^{2 / 3}}
$$

PN expansion parameter
point-particle contribution

$$
\begin{aligned}
\psi_{P P}(f)=2 \pi f t_{c}-\phi_{c}-\frac{\pi}{4} & +\frac{3}{128}(\mathcal{M} \pi f)^{-5 / 3}\left\{1+\left(\frac{3715}{756}+\frac{55}{9} \eta\right) x-\left(16 \pi-4 \beta x^{3 / 2}\right.\right. \\
& \left.+\left(\frac{15293365}{508032}+\frac{27145}{504} \eta+\frac{3085}{72} \eta^{2}-10 \sigma\right) x^{2}+\mathcal{O}\left(x^{5 / 2}\right)\right\}
\end{aligned}
$$

\square contains information on the mass ratio of the two coalescing bodies: combining this with the measured chirp mass, the individual masses can be resolved

$$
\begin{gathered}
m=m_{1}+m_{2} \\
\eta=m_{1} m_{2} / m^{2} \\
\hline
\end{gathered}
$$

$\square \beta=\frac{1}{\left(m_{1}+m_{2}\right)^{2}} \frac{\mathbf{L}}{|L|}\left[\left(\frac{113}{12}+\frac{25}{4} \frac{m_{2}}{m_{1}}\right) \mathbf{S}_{\mathbf{1}}+\left(\frac{113}{12}+\frac{25}{4} \frac{m_{1}}{m_{2}}\right) \mathbf{S}_{\mathbf{2}}\right]$
$\mathrm{L}=$ orbital angular momentum
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ individual spin angular momenta
σ contains spin-spin and spin-orbit terms. Note that it appears in the 2-PN term (x^{2})

The quantity which is actually measured is

$$
\chi_{e f f}=\frac{c}{G}\left(\frac{\mathbf{S}_{\mathbf{1}}}{m_{1}}+\frac{\mathbf{S}_{\mathbf{2}}}{m_{2}}\right) \cdot \frac{\mathbf{L}}{M}
$$

which shows the degree of alignments of the individual spins with the orbital angular momentum ($0^{\circ}=$ aligned, 180° antialgned)
if we use this approach, compute the waveform for the inspiralling going beyond the quadrupole approximation, and take the Fourier transform of the signal

$$
h(f)=\mathcal{A}(f) e^{i \psi(f)} \quad \psi(f)=\psi_{P P}+\psi_{\bar{Q}}+\psi_{\bar{\lambda}} \quad x=(v / c)^{2} \rightarrow \frac{1}{c^{2}(G m \pi f)^{2 / 3}}
$$

PN expansion parameter
point-particle contribution

$$
\begin{aligned}
\psi_{P P}(f)=2 \pi f t_{c}-\phi_{c}-\frac{\pi}{4} & +\frac{3}{128}(\mathcal{M} \pi f)^{-5 / 3}\left\{1+\left(\frac{3715}{756}+\frac{55}{9} \eta\right) x-(16 \pi-4 \beta) x^{3 / 2}\right. \\
& \left.+\left(\frac{15293365}{508032}+\frac{27145}{504} \eta+\frac{3085}{72} \eta^{2}-10 \sigma\right) x^{2}+\mathcal{O}\left(x^{5 / 2}\right)\right\}
\end{aligned}
$$

Quadrupole induced by rotation

$$
\begin{aligned}
& \quad \psi_{\bar{Q}}=\frac{3}{128}(\mathcal{M} \pi f)^{-5 / 3}\left\{-50\left[\left(\frac{m_{1}^{2}}{m^{2}} \chi_{1}^{2}+\frac{m_{2}^{2}}{m^{2}} \chi_{2}^{2}\right)\left(Q_{S}-1\right)+\left(\frac{m_{1}^{2}}{m^{2}} \chi_{1}^{2}-\frac{m_{2}^{2}}{m^{2}} \chi_{2}^{2}\right) Q_{a}\right] x^{2}\right\} \\
& Q_{S}=\frac{\bar{Q}_{1}+\bar{Q}_{2}}{2}, \quad Q_{a}=\frac{\bar{Q}_{1}-\bar{Q}_{2}}{2}
\end{aligned}
$$

Tidal contribution:

$$
\begin{gathered}
\psi_{\bar{\lambda}}=-\frac{3}{128}(\mathcal{M} \pi f)^{-5 / 3}\left\{24\left[\left(1+7 \eta-31 \eta^{2}\right) \lambda_{S}+\left(1+9 \eta-11 \eta^{2}\right) \lambda_{a} \delta m\right] x^{5}+\right\}+\mathcal{O}\left(x^{6}\right) \\
\lambda_{S}=\frac{\bar{\lambda}_{1}+\bar{\lambda}_{2}}{2}, \quad \lambda_{a}=\frac{\bar{\lambda}_{1}-\bar{\lambda}_{2}}{2} \quad \delta m=\frac{m_{1}-m_{2}}{m}
\end{gathered}
$$

Tidal contributions become relevant when the NS velocities are high, i.e. before merging
coalescing black holes

signal emitted during the merging: to be found by solving numerically Einstein's equations in the non linear regime

Ringdown: part of the signal emitted by the final black hole, which oscillates in its proper modes: the Quasi-Normal-Modes (QNM)

To identify the source we need:
I) improve the description of the inspiralling part of the signal near merging
2) compute the signal emitted during the merging and match it with the inspiralling part
3) compute the ringing tail and match it with the merging part of the signal

Modelling the merger: Numerical Relativity

When no approximation scheme can be applied (e.g. binary plunge \& merger, supernova explosion, etc.)
Einstein's equations have to be solved in their full non-linear form.
This requires heavy computational resources (parallel computing) but also refined mathematics!
In GR there is no global time coordinate, but we need an evolution for numerical impementation: give up general covariance!
Initial value formulation of Einstein's equations: 3+1 split of spacetime

Numerical studies of BH-BH coalescence started in the late 1990s with the Grand Challenge project. Many problems had to be solved:

- excision of singularity (how to teach the machine that there is no spacetime there?)
- different scales of the problems (multi-grid mesh refinement)
- gauge choice is a long-standing problem
- great care needed to avoid numerical errors to grow
- etc....

Breakthrough:
F. Pretorius Phys.Rev.Lett. 95 (2005) I2 I 101

LIGO first detection

After decades of numerical studies on BH coalescence, a bank of templates has been set up

Fitting formulae based on numerical simulations of BH merging have been found which, compared to the meging part of the detected signal, allow to estimate:
individual masses ans spins mass and angular momentum of the final black hole

Ringdown: part of the signal emitted by the final black hole, which oscillates in its proper modes: the Quasi-Normal-Modes (QNM)

How do we compute the frequencies of the Quasi-Normal Modes of stars and black holes? Again using perturbation theory $\quad g_{\mu \nu}=g_{\mu \nu}^{0}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll\left|g_{\mu \nu}^{0}\right|$
$\begin{aligned} & \text { if } \quad g_{\mu \nu}^{0}=\eta_{\mu \nu} \\ & \text { Einstein's eqs. reduce to }\end{aligned} \square_{F} \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \quad \rightarrow \quad\left[\nabla^{2}+\omega^{2}\right] \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}$
if $\quad g_{\mu \nu}^{0}$ is a solution describing a black hole (rotating or non rotating), or a non rotating star, Einstein's equations can be reduced to a Schroedinger-like equation for the radial part of appropriately defined perturbation functions

$$
\frac{d \Psi_{\ell m}}{d r_{*}^{2}}+\left[\omega^{2}-V_{\ell m}\left(r_{*}\right)\right] \Psi_{\ell m}=0
$$

A Schroedinger-like equation for BH perturbations

$$
\begin{aligned}
& \frac{d \Psi_{\ell m}}{d r_{*}^{2}}+\left[\omega^{2}-V_{\ell m}\left(r_{*}\right)\right] \Psi_{\ell m}=0 \\
& r_{*}=r+2 M \log \left(\frac{r}{2 M}-1\right)
\end{aligned}
$$

non rotating BH : the potential depends only on the BH mass rotating BH : the potential is complex and depends also on the angular momentum and on the frequency
non rotating star: the potential depends on how the energy density and the pressure are distributed inside the star, i.e. it depends on the equation of state of matter

(Chandrasekhar \& Ferrari, 1991)

The spacetime curvature act as a potential

The quasi-normal modes are complex frequency solutions of the wave equation, such that

for BH

$\Psi_{\ell m} \sim e^{i \omega r_{*}} \quad r_{*} \rightarrow \infty$
$\Psi_{\ell m} \sim e^{-i \omega r_{*}} \quad r_{*} \rightarrow-\infty$ pure ingoing wave at the horizon
for stars
$\Psi_{\ell m} \sim e^{i \omega r_{*}} \quad r_{*} \rightarrow \infty \quad$ pure outgoing wave at infinity
$\Psi_{\ell m}$ regular at $r=0$

In General Relativity the QNM frequencies depends only on the black hole mass and the angular momentum (no hair theorem)

$$
\mathrm{M}=\mathrm{nM}_{\odot} \quad \nu_{0} \sim(12 / \mathrm{n}) \mathrm{kHz} \quad \tau \sim \mathrm{n} \cdot 5.5 \times 1^{-5} \mathrm{~s}
$$

$$
\text { for } \mathrm{M}=60 \mathrm{M}_{\odot} \quad \nu_{0}=\mathbf{2 0 0} \mathrm{Hz}, \quad \tau_{0}=3.3 \mathrm{~ms}
$$

frequency increases up to 30% if the
BH rotates
in the non rotating case
The frequency of the lowest quasi-normal mode has been extracted from the detected ringdown of the firts event GW150914. The black hole mass and angular momentum agree with the values found from the merging

To find the waveform of the gravitational wave signal emitted in the coalescence of two black holes is a very very complex problem
I) the inspiral: we can apply approximation schemes (PN formalism), but we need many terms in the expansion to extract physical information
2) the merging: Einstein's equations have to be integrated in their full non-linear complexity
3) ringing tail : the frequencies of oscillation of the final black hole are found using perturbation theory
4) the three part of the signal must be matched, and this is quite difficult: when does the inspiral end and the merging start? When the ringing tail sets in?

If the merging bodies are neutron stars 2) and 3) have to include the dinamics of matter and its coupling with the gravitational field

