
Gravitational Waves: a theoretical primer

Valeria Ferrari

SAPIENZA 
UNIVERSITÀ DI ROMA

Gravitational waves: foundations and beyond
Physics  Department, Sapienza University of Rome

January 16th 2018 
1



2

Some basic facts about general relativity: the role of the metric 
tensor is twofold:

1) ds

2 = gµ⌫dx
µ
dx

⌫
it allows to compute the distance between
spacetime points, i.e. it describes the 
geometrical properties of the spacetime

is the generalisation of the Newtonian potential 
(it follows from the equivalence principle), therefore
it describes the gravitational field

2) gµ⌫

|hµ⌫ | << |⌘µ⌫ |gµ⌫ = ⌘µ⌫ + hµ⌫

Gravitational waves as a perturbation of a flat spacetime

 We need to solve Einstein’s equations for the perturbation hµ⌫
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Gµ⌫ =
8⇡G

c4
Tµ⌫

Einstein’s equations

��
�µ =

1

2
g�↵ [g↵�,µ + g↵µ,� � g�µ,↵] Christoffel symbols

Gµ⌫ =

✓
Rµ⌫ � 1

2
gµ⌫R

◆
Einstein tensor

Tµ⌫
energy-momentum tensor
source of the perturbation

Rµ⌫ =
8⇡G

c4

✓
Tµ⌫ � 1

2
gµ⌫T

◆Alternative way of writing Einstein’s equations
This is the form of
Einstein’s eqs we are 
going to use

non linear part

|hµ⌫ | << |⌘µ⌫ |gµ⌫ = ⌘µ⌫ + hµ⌫

R↵
�µ⌫ = �↵

�⌫,µ � �↵
�µ,⌫ � �↵

⌫�

�µ + �↵

µ�

�⌫      Riemann tensor

,↵ ⌘ @

@x

↵

Ricci tensor and scalar curvatureRµ⌫ = g↵�R↵µ�⌫ , R = gµ⌫Rµ⌫
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��
�µ =

1

2
⌘�↵ [h↵�,µ + h↵µ,� � h�µ,↵] +O(h2)

Rµ⌫ =
@

@x

↵
�↵

µ⌫ � @

@x

⌫
�↵

µ↵ + �↵
�↵�

�
µ⌫ � �↵

�⌫�
�
µ↵ Ricci tensor

non linear part

Rµ⌫ =
8⇡G

c4

✓
Tµ⌫ � 1

2
gµ⌫T

◆
Einstein’s equations

become

⇢
⇤Fhµ⌫ �


@

2

@x

�
@x

µ
h

�
⌫ +

@

2

@x

�
@x

⌫
h

�
µ � @

2

@x

µ
@x

⌫
h

�
�

��

= �16⇡G

c4

✓
Tµ⌫ � 1

2
⌘µ⌫T

◆

⇤F = ⌘

↵� @

@x

↵

@

@x

�
= � @

2

c

2
@t

2
+r2

|hµ⌫ | << |⌘µ⌫ |gµ⌫ = ⌘µ⌫ + hµ⌫
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⇤FA↵ � @

2
A

�

@x

↵
@x

�
= �4⇡

c

J↵

⇤A↵ = �4⇡

c
J↵

Maxwell’s equations written for the vector potential

A

0
↵ = A↵ +

@�

@x

↵
but we know that                                             is still a solution

do we have an analogous of the Lorenz gauge for gravitational waves?

@

@x

�
A

0� = 0and if we choose the scalar function
ɸ such that 

Lorenz gauge
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⇢
⇤Fhµ⌫ �


@

2

@x

�
@x

µ
h

�
⌫ +

@

2

@x

�
@x

⌫
h

�
µ � @

2

@x

µ
@x

⌫
h

�
�

��

= �16⇡G

c4

✓
Tµ⌫ � 1

2
⌘µ⌫T

◆

x

µ0 = x

µ + ✏

µ(x)
✏µ,⌫ = O(h)

our gauge freedom: diffeomorfism invariance

gµ⌫��
µ⌫ = 0

harmonic gauge condition
@

@x

µ
h

µ
⌫ =

1

2

@

@x

⌫
h

µ
µ

(
⇤

F

h
µ⌫

= � 16⇡G
c

4

�
T
µ⌫

� 1
2⌘µ⌫T

�

@

@x

µhµ

⌫

= 1
2

@

@x

⌫ hµ

µ

,

h̄µ⌫ ⌘ hµ⌫ � 1

2
⌘µ⌫h

(
⇤

F

h̄
µ⌫

= � 16⇡G
c

4 T
µ⌫

@

@x

µ h̄µ

⌫

= 0 ,

A perturbation of a flat spacetime propagates as a wave travelling at the speed og light
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h̄µ⌫ ⌘ hµ⌫ � 1

2
⌘µ⌫h

(
⇤

F

h̄
µ⌫

= � 16⇡G
c

4 T
µ⌫

@

@x

µ h̄µ

⌫

= 0 ,

The retarded potential solution automatically satisfies 
the harmonic gauge condition

@

@x

µ
h̄

µ
⌫ = 0

In vacuum T𝜇𝜈 =0
(
⇤

F

h̄
µ⌫

= 0
@

@x

µ h̄µ

⌫

= 0

plane wave solution

Aµ⌫ polarization tensor

k↵ wave vector

h̄
µ⌫

= <
n

A
µ⌫

eik↵x

↵
o

from the gauge condition:
wave vector and polarization tensor
are orthogonal

kµA
µ
⌫ = 0

rx’

x

O

x−x’

source

y

x-y

x

h̄µ⌫(t,x) =
4G

c4

Z

V

Tµ⌫(t� |x-y|
c ,y )

|x-y | d3y
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let us assume that a progressive wave is traveling along the x-direction

✓
� 1

c

2

@

2

@t

2
+

@

2

@x

2

◆
h̄

µ
⌫ = 0 where h̄

µ
⌫ = h̄

µ
⌫(t�

x

c

)

h̄t

t

= h̄x

t

, h̄t

y

= h̄x

y

,

h̄t

x

= h̄x

x

, h̄t

z

= h̄x

z

i.e.

Polarization degrees of gravitational waves

the harmonic gauge condition gives                                                                   

@h̄

µ
⌫

@x

µ
= 0 h̄t

⌫

= h̄x

⌫
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gravitational wave have only 
two degrees of freedom
 
Plus (+)  polarization   hyy = -hyy 
Cross (x) polarization  hyz= hzy

The harmonic gauge condition
@

@x

µ
h̄

µ
⌫ = 0

remains satisfied if we make 
an infinitesimal                                                              
coordinate  transformation

x

µ0 = x

µ + ✏

µ(x) ⇤F ✏
µ = 0provided

we can choose  𝜀𝜇  to put 
4 constraints on the components of h𝜇𝜈   :

h̄t

x

= h̄t

y

= h̄t

z

= 0, h̄y

y

+ h̄z

z

= 0

h̄t

t

= h̄x

t

, h̄t

y

= h̄x

y

,

h̄t

x

= h̄x

x

, h̄t

z

= h̄x

z

this constraint + the relations
among the components of h𝜇𝜈 
previously derived

This gauge is said TT(transverse, traceless)- gauge

hTT
µ⌫ =

0

BB@

0 0 0 0
0 0 0 0
0 0 hyy hyz

0 0 hyz �hyy

1

CCA

hµ⌫h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫hIn the tt-gauge and are the same
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y
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how gravity affects the relative motion of neighbouring particles?

geodesic devitation

R𝜇𝛼𝛽𝛾          is the Riemann tensor
u𝛼               is the particle four-velocity

𝛿x𝜇

Cross (x)  polarization
   hyz = hzy ≠ 0

hyz = h⇥e
i!(t� x

c

)

assuming the  particles are at rest before the wave arrives, 
and that the Riemann tensor is computed to first order in h𝜇𝜈

hTT
µ⌫ =

0

BB@

0 0 0 0
0 0 0 0
0 0 hyy hyz

0 0 hyz �hyy

1

CCA

  if the wave travels along x

D

2
�x

µ

d⌧

2
= R

µ
↵��u

↵
u

�
�x

�

Plus (+)  polarization
   hyy = -hyy ≠ 0

hyy = h+e
i!(t� x

c

)

d

2

dt

2
�x

i =
1

2
⌘

ij
@h

TT
jm

@t

2
�x

m
�x

i = �x

i
0 +

1

2
⌘

ij
h

TT
jk �x

k
0
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Wave generation: the slow motion approximation

general solution

rx’

x

O

x−x’

source

y

x-y

x

h̄µ⌫(t,x) =
4G

c4

Z

V

Tµ⌫(t� |x-y|
c ,y )

|x-y | d3y tret = t� |x-y|
c

if the source is isolated  
|y| < ✏, ✏ = source size

λ is the wavelenght of the emitted radiation,  and !

c
=

1

�

if we assume that  λ  is  much larger than the source size

� >> ✏ ! c

!
>> ✏ ! !✏

c
<< 1 i.e. the typical velocities are much

 smaller than the speed of light
!y

c
<< 1

ei!
|x-y|

c

|x-y | ⇠ ei!
r
c

r
|x| ⌘ r h̄µ⌫(!,x) =

4G

c4
ei!

r
c

r

Z

V
Tµ⌫(!,y) d3y

h̄µ⌫(!,x) =

Z

V
d3y Tµ⌫(!,y)

ei!
|x-y|

c

|x-y |

Take the Fourier transform
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8
>><

>>:

h̄µ0 = 0, µ = 0..3

h̄ik(t, r) = 2G
c4r

h
d2

dt2 qik(t� r
c )
i

h̄µ⌫(t, r) =
4G

c4r

Z

V
Tµ⌫(t�

r

c
,y) d3yfinally, reverting to the time domain

NOTE THAT:

4G

c4
⇠ 8 · 10�50 s2/g cm !!!

However, to compute the emitted wave we do not need  to know all the components of 
the stress-energy tensor:

qkn quadrupole moment

T 00
source energy density

qkn(t) =
1

c2

Z

V
T 00(t,y) yk yn d3y

Tensor Virial TheoremZ

V
T kn(t,y) d3y =

1

2

d2

dt2
qkn(t)

k, n = 1, 3

@T

µ⌫

@x

⌫
= 0

Z

V
T

µ0
d

3
y = const ! h̄

µ0 = const

Conservation of energy and momentum
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8
>><

>>:

h̄µ0 = 0, µ = 0..3

h̄ik(t, r) = 2G
c4r

h
d2

dt2 qik(t� r
c )
i

h̄µ⌫(t, r) =
4G

c4r

Z

V
Tµ⌫(t�

r

c
,y) d3yfinally, reverting to the time domain

unlike em waves, no dipole radiation
(conservation of total momentum)

NOTE THAT:

In order to emit gravitational waves, a system must possess a certain
degree of asymmetry

However, to compute the emitted wave we do not need  to know all the components of 
the stress-energy tensor:

qkn quadrupole moment

T 00
source energy density

qkn(t) =
1

c2

Z

V
T 00(t,y) yk yn d3y

Tensor Virial TheoremZ

V
T kn(t,y) d3y =

1

2

d2

dt2
qkn(t)

k, n = 1, 3

@T

µ⌫

@x

⌫
= 0

Z

V
T

µ0
d

3
y = const ! h̄

µ0 = const

Conservation of energy and momentum

~dem =
X

i

qi~ri
~dg =

X

i

mi~ri
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Luminosity of a gravitational wave source

Qjk ⌘ qjk � 1

3
�jkq

reduced quadrupole moment

LGW =
dEGW

dt
=

G

5c5

*
3X

k,n=1

...
Qkn

⇣
t� r

c

⌘ ...
Qkn

⇣
t� r

c

⌘+

qkn quadrupole moment

T 00
source energy density

qkn(t) =
1

c2

Z

V
T 00(t,y) yk yn d3y

8
>><

>>:

h̄µ0 = 0, µ = 0..3

h̄ik(t, r) = 2G
c4r

h
d2

dt2 qik(t� r
c )
i

In conclusion

Gravitational waveform in the weak field, slow-motion approximation
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qkn quadrupole moment

T 00
source energy density

qkn(t) =
1

c2

Z

V
T 00(t,y) yk yn d3y

8
>><

>>:

h̄µ0 = 0, µ = 0..3

h̄ik(t, r) = 2G
c4r

h
d2

dt2 qik(t� r
c )
i

y

r1

r2

m1

m2

x

binary system in circular orbit

x1 =

m2

M

l0 cos!Kt x2 = �m1

M

l0 cos!Kt

y1 =

m2

M

l0 sin!K y2 = �m1

M

l0 sin!Kt

1) the equation of motion

!K =

s
GM

l30

l0 = r1 + r2

M = m1 +m2

T

00 = c

2
2X

n=1

mn �(x� xn) �(y � yn) �(z)

q

xx

=

µ

2

l

2
0 cos 2!

K

t+ cost

q

yy

= �µ

2

l

2
0 cos 2!

K

t+ cost1

q

xy

=

µ

2

l

2
0 sin 2!

K

t

µ =
m1m2

M

2) compute the quadrupole components

Aij(t) =

0

@
cos 2!Kt sin 2!Kt 0

sin 2!Kt � cos 2!Kt 0

0 0 0

1

Ahij(t, r) = �h0

r
Aij(t�

r

c
)

h0 =
4 µ M G2

l0 c4

3) compute the waveform

instantaneous wave amplitude waves are emitted at twice the 
orbital frequency
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The binary radiates energy in gravitational waves 

Qjk ⌘ qjk � 1

3
�jkqLGW =

dEGW

dt
=

G

5c5

*
3X

k,n=1

...
Qkn

⇣
t� r

c

⌘ ...
Qkn

⇣
t� r

c

⌘+

q

xx

=

µ

2

l

2
0 cos 2!

K

t+ cost

q

yy

= �µ

2

l

2
0 cos 2!

K

t+ cost1

q

xy

=

µ

2

l

2
0 sin 2!

K

t

using the components of
the quadrupole moment 
we just computed

LGW =
32

5

G4

c5
µ2M3

l50
µ =

m1m2

M

reduced quadrupole moment

y

r1

r2

m1

m2

x

E
orb

= E
K

+ U = �1

2

GµM

l0

the orbital energy issince total energy is conserved
dE

orb

dt
+ L

GW

= 0

l30
dl0
dt

= �

64

5

G3

c5
µ M2

�

l0(t) = lin0


1� t

tc

�1/4 tc =
5

256

c5

G3

�
lin0

�4

µM2
time to coalescence

lin0 = orbital distance at t=0

due to gravitational wave emission, the orbital distance decreases in time

l0 = r1 + r2
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y

r1

r2

m1

m2

x

l0(t) = lin0


1� t

tc

�1/4 tc =
5

256

c5

G3

�
lin0

�4

µM2
time to coalescence

lin0 = orbital distance at t=0

l0 = r1 + r2
!K =

s
GM

l30
!K(t) = !in

K


1� t

tc

��3/8

, !in
K =

s
GM

(lin0 )3

 the orbital frequency increases in time

and consequently, the orbital period                              decreases  TK =
2⇡

!K

First indirect proof of the existence of gravitational waves:
Nobel Prize in 1993

J.M. Weisberg, J.H. Taylor
Relativistic Binary Pulsar PSR1913+16:Thirty Years of Observation
in Binary Radio Pulsars ASP Conference series, 2005 
eds. F.A.A. Rasio, I.H.Stairs



18

y

r1

r2

m1

m2

x

l0(t) = lin0


1� t

tc

�1/4 tc =
5

256

c5

G3

�
lin0

�4

µM2
time to coalescence

lin0 = orbital distance at t=0

l0 = r1 + r2

Aij(t) =

0

@
cos 2!Kt sin 2!Kt 0

sin 2!Kt � cos 2!Kt 0

0 0 0

1

Ahij(t, r) = �h0

r
Aij(t�

r

c
)

h0 =
4 µ M G2

l0 c4 instantaneous wave amplitude

!K =

s
GM

l30
!K(t) = !in

K


1� t

tc

��3/8

, !in
K =

s
GM

(lin0 )3

The wave amplitude increase as well

h0(t) =
4⇡2/3 G5/3 M5/3

c4
⌫2/3GW (t)

M =
(m1m2)3/5

(m1 +m2)1/5
chirp mass

gravitational wave frequency

⌫GW (t) =
2!K

2⇡
=

1

⇡

s
GM

l30(t)
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Chirp

h0(t) =
4⇡2/3 G5/3 M5/3

c4
⌫2/3GW (t)

⌫GW (t) =
2!K

2⇡
=

1

⇡

s
GM

l30(t)

M =
(m1m2)3/5

(m1 +m2)1/5
chirp mass
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0 0.05 0.1 0.15
Time (s)

-5e-21

0

5e-21

G
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tio
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in

chirp

wave frequency

M =
(m1m2)3/5

(m1 +m2)1/5
=

c3

G


5

96
⇡�8/3 ⌫�11/3 ⌫̇

�3/5

measuring	the	wave	frequency	and	its	time	
derivative,	we	measure	the	chirp	mass

chirp mass

⌫GW (t) =
1

⇡

s
GM

l30(t)
=

53/8

8⇡

✓
c3

GM

◆5/8 
1

tc � t

�3/8
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0 20 40 60 80 100
0

50

100

150

200

m1(M⊙)

M
(M

⊙
)

63.7M⊙

Mchirp=
(m1m2)3/5

M1/5
=27.9M⊙

M=m1+m2

M ' 28M� ! (m1 +m2) & 63.7M�

Too large to be two neutron stars

GW150914

over 0.2 s the wave frequency increases from 35 to 150 Hz, from which we infer 
that, just before merging, the distance bewteen the two masses  was

M ≿ 63.7 M☉⌫GW (t) =
1

⇡

s
GM

l30(t)

d
orb

(150 Hz) ' 339 km

The two objects must be extremely compact!

Are they Black Holes?

What do we infer from the chirp mass?
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ç inspiral (chirp) è

çè

çè

coalescing black holes signal emitted during the merging: to be 
found by solving numerically Einstein’s  
equations in the  non linear regime

Ringdown: part of the signal emitted  
by the final black hole,  
which oscillates in its proper modes: 
the Quasi-Normal-Modes (QNM)

1)

2)

3)

To identify the source we need:

1)  improve the description of the inspiralling part of the signal near merging
2)  compute the signal emitted during the merging and match it with the inspiralling part
3)  compute the ringing tail and match it with the merging part of the signal



1) Modelling the inspiral: Post-Newtonian expansion beyond the quadrupole approximation

Systems with (relatively) weak gravitational fields & low velocities:  dynamics of GR expressed as 
Newton’s laws + corrections, using quantities and concepts of Newtonian physics! 

WARNING:             is not a perturbation!h↵�

is an effective energy-momentum 
pseudo-tensor

⌧↵�

h↵� = ⌘↵� �
p
�gg↵�

g↵� G↵� =
8⇡G

c4
T↵�

⇤Fh
↵� = �16⇡G

c4
⌧↵�(T, h)satisfies the equations

is a solution of Einstein’s eqs. then the tensorif

Expansion parameter: " ⇠ v

c
⇠

r
GM

rc2
h↵� =

X

n

✏nh↵�
n

we expand the solutions as 

and find the expansion coefficients iteratively 

h↵�
0 = 0, ⇤Fh

↵�
n = �16⇡G

c4
⌧↵� [T, hn�1]

several mathematical subtleties: different expansions in near zone and wave zone to be matched, 
regularization procedures (some approaches use techniques similar to field theory), etc….



h(f) = A(f)ei (f)  (f) =  PP +  Q̄ +  �̄ x = (v/c)

2 ! 1

c

2
(Gm⇡f)

2/3

PN expansion parameter

24

if we use this approach, compute the waveform for the inspiralling going beyond the quadrupole 
approximation, and take the Fourier transform of the signal

 PP (f) = 2⇡ftc � �c � ⇡

4
+

3

128
(M⇡f)�5/3

⇢
1 +

✓
3715

756
+

55

9
⌘

◆
x–(16⇡ � 4�)x3/2

+

✓
15293365

508032
+

27145

504
⌘ +

3085

72
⌘

2 � 10�

◆
x

2 +O(x5/2)

�

point-particle contribution

m = m1 +m2

⌘ = m1m2/m2

contains information on the mass ratio of the two coalescing bodies: combining
this with the measured chirp mass, the individual masses can be resolved

σ contains spin-spin	and	spin-orbit terms.	Note	that it appears in	the	2-PN	term (x2)

L = orbital angular momentum

S1,S2 individual spin angular momenta

� =
1

(m1 +m2)2
L

|L|

✓
113

12
+

25

4

m2

m1

◆
S1 +

✓
113

12
+

25

4

m1

m2

◆
S2

�

The quantity which is actually measured is 

which shows the degree of alignments of the individual spins with the orbital angular momentum 
(0o=aligned, 180o antialgned)  

�eff =
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Quadrupole induced by rotation

Tidal contribution:

 �̄ = � 3
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�
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2
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m1 �m2

m

Tidal contributions become relevant when the NS velocities are high, i.e. before merging

if we use this approach, compute the waveform for the inspiralling going beyond the quadrupole 
approximation, and take the Fourier transform of the signal

 PP (f) = 2⇡ftc � �c � ⇡
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point-particle contribution

h(f) = A(f)ei (f)  (f) =  PP +  Q̄ +  �̄ x = (v/c)
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2
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PN expansion parameter
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coalescing black holes signal emitted during the merging: to be 
found by solving numerically Einstein’s  
equations in the  non linear regime

Ringdown: part of the signal emitted  
by the final black hole,  
which oscillates in its proper modes: 
the Quasi-Normal-Modes (QNM)

1)

2)

3)

To identify the source we need:

1)  improve the description of the inspiralling part of the signal near merging
2)  compute the signal emitted during the merging and match it with the inspiralling part
3)  compute the ringing tail and match it with the merging part of the signal



Modelling the merger: Numerical Relativity

When no approximation scheme can be applied (e.g. binary plunge & merger, supernova explosion, etc.)
Einstein’s equations have to be solved in their full non-linear form.

This requires heavy computational resources (parallel computing) but also refined mathematics!

where 𝛼 :  lapse function;  βi : shift vector ;  𝛾ij : spatial metric  ;  n𝛼 : normal 1-form to hypersurface

Initial value formulation of Einstein’s equations: 3+1 split of spacetime2.2 3+1 SPLIT OF SPACETIME 65

time

3

2

1

t3

t1

t2

Spacelike hypersurfaces

Fig. 2.1: Foliation of spacetime into three-dimensional spacelike hypersurfaces.

In the following sections I will introduce the 3+1 formalism of general rela-
tivity. The discussion found here can be seen in more detail in [206] and [305].

2.2 3+1 split of spacetime

In order to study the evolution in time of any physical system the first thing that
needs to be done is to formulate such an evolution as an initial value or Cauchy
problem: Given adequate initial (and boundary) conditions, the fundamental
equations must predict the future (or past) evolution of the system.

When trying to write Einstein’s equations as a Cauchy problem we imme-
diately encounter a stumbling block: The field equations are written in such a
way that space and time are treated on an equal footing. This covariance is very
important (and quite elegant) from a theoretical point of view, but it does not
allow us to think clearly about the evolution of the gravitational field in time.
Therefore, the first thing we need to do in order to rewrite Einstein’s equations
as a Cauchy problem is to split the roles of space and time in a clear way. The
formulation of general relativity that results from this splitting is known as the
3+1 formalism.

Let us start by considering a spacetime with metric gαβ . As already men-
tioned in Chapter 1, we will always assume that the spacetimes of interest are
globally hyperbolic, that is, they have a Cauchy surface. Any globally hyperbolic
spacetime can be completely foliated (i.e. sliced into three-dimensional cuts) in
such a way that each three-dimensional slice is spacelike (see Figure 2.1). We
can identify the foliation with the level sets of a parameter t which can then be
considered a universal time function (but we should keep in mind that t will not
necessarily coincide with the proper time of any particular observer). Because
of this fact, such a foliation of spacetime into spatial hypersurfaces is often also
called a synchronization.

Consider now a specific foliation, and take two adjacent hypersurfaces Σt

and Σt+dt. The geometry of the region of spacetime contained between these

66 THE 3+1 FORMALISM

t

t + dt

dt
xi

xixi – idt

normal line coordinate line

Fig. 2.2: Two adjacent spacelike hypersurfaces. The figure shows the definitions of the
lapse function α and the shift vector βi.

two hypersurfaces can be determined from the following three basic ingredients
(see Figure 2.2):

• The three-dimensional metric γij (i, j = 1, 2, 3) that measures proper dis-
tances within the hypersurface itself:

dl2 = γij dxidxj . (2.2.1)

• The lapse of proper time dτ between both hypersurfaces measured by those
observers moving along the direction normal to the hypersurfaces (the so-
called normal or Eulerian observers):

dτ = α(t, xi) dt . (2.2.2)

Here α is known as the lapse function.
• The relative velocity βi between the Eulerian observers and the lines of

constant spatial coordinates:

xi
t+dt = xi

t − βi(t, xj) dt , (for Eulerian observers) (2.2.3)

The 3-vector βi is known as the shift vector.

Notice that both the way in which spacetime is foliated, and also the way
in which the spatial coordinate system propagates from one hypersurface to the
next, are not unique. The lapse function α and the shift vector βi are therefore
freely specifiable functions that carry information about our choice of coordinate
system, and are known as the gauge functions.23

23The notation for lapse and shift used here is common, but certainly not universal. A
frequently used alternative is to denote the lapse function by N , and the shift vector by N i.

In GR there is no global time coordinate, but we need an evolution for numerical impementation: give up general covariance! 

ds

2 = (�↵

2 + �i�
i)dt2 + 2�idtdx

i + �ijdx
i
dx

j

Using the tools of differential geometry, Einstein’s equations decompose in elliptic equations (consistency conditions on a 
given t=const. hypersurface), and hyperbolic equations for the time evolution of the spacetime metric.
Large numerical facilities are needed to solve these equations

Numerical studies of BH-BH coalescence  started in the late 1990s with the Grand Challenge project. Many problems  
had to be solved:

- excision of singularity (how to teach the machine that there is no spacetime there?)
- different scales of the problems (multi-grid mesh refinement) 
- gauge choice is a long-standing problem
- great care needed to avoid numerical errors to grow
- etc….
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After	decades	of	numerical	studies	on	BH	coalescence,	a	bank	of	templates	
has	been	set	up	

Deser-Misner (ADM) mass of the spacetime suggests
that approximately 15% of the total scalar field energy
does not collapse into black holes. The remnant scalar field
leaves the vicinity of the orbit quite rapidly (in t ! 30M0,
which is on the order of the light crossing time of the or-
bit). Black-hole masses are estimated from the horizon area
A and angular momentum J, and applying the Smarr
formula:

M "
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
M2
ir # J2=$4M2

ir%
q

; Mir &
!!!!!!!!!!!!!!!
A=16!

p
: (4)

The horizon angular momentum of the final black hole is
calculated using two methods (which do give zero angular
momentum when applied to the initial black holes, as
expected). First, by using the dynamical horizon frame-
work [16], though assuming that the rotation axis of the
black hole is orthogonal to the z " 0 orbital plane, and that
each closed orbit of the azimuthal vector field (which at
late times should become a Killing vector) lies in a z "
const surface of the simulation. Because of the symmetry
of the initial data, these assumptions are probably valid,
though this will eventually need to be confirmed. The
second method, following [17], is to measure the ratio Cr
of the polar to equatorial proper radius of the horizon, and
use the formula that closely approximates the function that
is valid for Kerr black holes:

a !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1' $2:55Cr ' 1:55%2

q
: (5)

As seen in Fig. 2, the initial ringing of the black hole is
quite apparent in the estimate using Cr. Remarkably, the
dynamical horizon estimate for a and average value ob-
tained using Cr agree quite closely, even shortly after the
merger when one might have expected the black hole to
still be too far from its stationary state to have either
method be applicable.

FIG. 2 (color online). The plot to the left shows the net black-
hole mass of the spacetime in units of the mass M0 of a single
initial black hole, calculated from apparent horizon (AH) prop-
erties [using (4) with the dynamical horizon estimate for J], and
from simulations with three different resolutions. The initial
sharp increase in mass is due to scalar field accretion, the small
‘‘wiggle’’ at around 20M0 appears to be a gauge effect, and the
‘‘jaggedness’’ around the time of the merger is due to robustness
problems in the AH finder that manifest when the AH shapes are
highly distorted. To the right the Kerr parameter a of the final
black hole is shown (for clarity we only plot the results from a
single simulation), calculated using the ratio Cr of polar to
equatorial proper circumference of the AH and applying (5),
and using the dynamical horizon framework (curve labeled DH).
The loss of mass (and similarly increase in a) with time after the
merger is due to accumulating numerical error.

FIG. 3. A sample of the gravitational waves emitted during the
merger, as estimated by the Newman-Penrose scalar !4 (from
the medium resolution simulation). Here, the real component of
!4 multiplied by the coordinate distance r from the center of the
grid is shown at a fixed angular location, though several dis-
tances r. The waveform has also been shifted in time by amounts
shown in the plot, so that the oscillations overlap. If the waves
are measured far enough from the central black hole then the
amplitudes should match, and they should be shifted by the light
travel time between the locations (i.e., by 25M0 in this example).
That we need to shift the waveforms by more than this suggests
the extraction points are still too close to the black hole; the
decrease in amplitude is primarily due to numerical error as the
wave moves into regions of the grid with relatively low resolu-
tion.

TABLE I. Some properties of the simulated equal mass binary
system described in the text. Where relevant, the units have been
scaled to the mass M0 of one of the initial black holes, measured
from the higher resolution simulation at a time after the majority
of scalar field accretion has occurred. The final black-hole mass
and spin where estimated from data as shown in Fig. 2, a little
while after the black hole formed, though not so long after as to
be affected by the ‘‘drift’’ from numerical error. The initial
proper separation was measured at t " 10M0, and is the proper
length of the piece of a coordinate line outside the apparent
horizons that connects their coordinate centers. The black holes
initially have zero spin.

Low Res. Med. Res. High Res.
ADM Mass 2:36M0 2:39M0 2:39M0

Initial BH masses 0:97M0 0:99M0 M0

Orbital eccentricity 0–0.2 0–0.2 0–0.2
Proper separation 16:5M0 16:6M0 16:6M0

Angular velocity (M0 0.023 0.023 0.023

Final BH mass 1:77M0 1:85M0 1:90M0

BH spin parameter 0.74 0.74 0.74

PRL 95, 121101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005

121101-3

Breakthrough:  
F. Pretorius  Phys.Rev.Lett. 95 (2005) 121101
 

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2

LIGO first detection

Fitting formulae based on numerical simulations of BH merging have been found 
which, compared to the meging part of the detected signal, allow to estimate:

individual masses ans spins
mass and angular momentum of the final black hole 
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Ringdown: part of the signal emitted  
by the final black hole,  
which oscillates in its proper modes: 
the Quasi-Normal-Modes (QNM)

d `m

dr2⇤
+

⇥
!2 � V`m(r⇤)

⇤
 `m = 0

if               is a solution describing a black hole (rotating or non rotating), or a non rotating star,
Einstein’s equations  can be reduced to a Schroedinger-like equation for the radial part of  
appropriately defined perturbation functions 

g0µ⌫

How do we compute the frequencies of the Quasi-Normal Modes of stars and black holes?
Again using perturbation theory gµ⌫ = g0µ⌫ + hµ⌫ |hµ⌫ | << |g0µ⌫ |

⇤F h̄µ⌫ = �16⇡G

c4
Tµ⌫ !

⇥
r2 + !2

⇤
h̄µ⌫ = �16⇡G

c4
Tµ⌫

 Einstein’s eqs. reduce to

g0µ⌫ = ⌘µ⌫if
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(Chandrasekhar & Ferrari, 1991)

(Regge&Wheeler 1957)

more details in Paolo & Leonardo’s talks

d `m

dr2⇤
+

⇥
!2 � V`m(r⇤)

⇤
 `m = 0

A Schroedinger-like equation for  BH perturbations

r⇤ = r + 2M log

⇣ r

2M
� 1

⌘

non rotating BH:  the potential depends only on the BH mass 
rotating BH: the potential   is complex and depends also 
on the angular momentum and on the frequency

non rotating star:  the potential depends  on how the energy density 
and the pressure are distributed inside the star, i.e. it depends on the 
equation of state of matter

The spacetime curvature act as a potential

The quasi-normal modes are complex frequency solutions
of the wave equation, such that

 `m ⇠ ei!r⇤ r⇤ ! 1 pure outgoing wave at infinity

 `m ⇠ e�i!r⇤ r⇤ ! �1 pure ingoing wave at the horizon

for BHs

for stars

 `m ⇠ ei!r⇤ r⇤ ! 1 pure outgoing wave at infinity

 `m regular at r = 0
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Ringdown: part of the signal emitted  
by the final black hole,  
which oscillates in its proper modes: 
the Quasi-Normal-Modes (QNM)

the ringdown is a superposition of damped 
sinusoids at the frequencies and with the 
damping times of the QNMs

In General Relativity the QNM frequencies depends only on the black hole 
mass and the angular momentum (no hair theorem)

frequency	increases	
up	to	30%	if	the
BH	rotates

M = nM� ⌫0 ⇠ (12/n)kHz ⌧ ⇠ n · 5.5⇥ 10�5 s

The frequency of the lowest quasi-normal mode has been  
extracted from the detected  ringdown of the firts event 
GW150914. The black hole mass and angular momentum  
agree with the values found from the merging

for M = 60 M� ⌫0 = 200 Hz, ⌧0 = 3.3 ms

in the non rotating case
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To find the waveform of the gravitational wave signal emitted in the coalescence
of two black holes is a very very complex problem

1) the inspiral: we can apply approximation schemes (PN formalism), but we need 
     many terms in the expansion to extract physical information  

2) the merging: Einstein’s equations have to be integrated in their full non-linear
    complexity 

3) ringing tail : the frequencies of oscillation of the final black hole are found using 
    perturbation theory

4) the three part of the signal must be matched, and this is quite difficult:
    when does the inspiral end and the merging start? When the ringing tail sets in?

If the merging bodies are neutron stars 2) and 3) have to include the dinamics of 
matter and its coupling with the gravitational field


