

CEPC 2018 EU Workshop

RPC Option for Muon Detector

Liang Li

Shanghai Jiao Tong University

CEPC 2018 EU Workshop, Rome

May 25th , 2018

CEPC Detector Overview

Baseline: ILD-like

- TPC tracking + Imaging calorimetry (ECAL+HCAL)
- PFA-oriented

Alternatives

- Low-field concept
- Full-silicon concept

Muon Detector Overview

Structure:

- Between magnet iron yoke, outside HCAL
- Cylindrical barrel & two endcap system
- Solid angle coverage: 0.98 * 4π

Technology:

dodecagon

- Bakelite/glass RPC as baseline
- Many other options considered
 - µRWell
 - Micromegas, GEM
 - MDT, Scintillator Strip

Baseline: RPC Option

 \checkmark

Resistive Plate Chamber (RPC)

Parameters		Bakelite	Glass
Bulk resistivity $[\Omega \cdot cm]$	Normal	$10^{10} \sim 10^{12}$	$> 10^{12}$
	Developing	$10^8 \sim 10^9$	
Max unit size (2 mm thick) [m]		1.2×2.4	1.0×1.2
Surface flatness [nm]		< 500	< 100
Density [g/cm ³]		1.36	2.4~2.8
Min board thickness [mm]		1.0	0.2
Mechanical performance		Tough	Fragile
Rate capability [Hz/cm ²]	Streamer	100@92% [97]	
	Avalanche	10K	100@95% [98]
Noise rate [Hz/cm ²]	Streamer	< 0.8	0.05 [99]

Low cost, easy construction Position resolution: 5-10 mm Time resolution: ~1 ns

Table 7.1: The baseline design parameters of the CEPC muon system

Parameter	Possible range	Baseline
Lb/2 [m]	3.6 - 5.6	4.0
Rin [m]	3.5 - 5.0	4.4
Rout [m]	5.5 - 7.2	7.0
Le [m]	2.0 - 3.0	2.6
Re [m]	0.6 - 1.0	0.8
Segmentation	8/10/12	12
Number of layers	6 - 10	8
Total thickness of iron	$6 - 10\lambda \ (\lambda = 16.77 \text{ cm})$	8λ (136 cm) (8/8/12/12/16/16/20/20/24) cm
Solid angle coverage	$(0.94 - 0.98) \times 4\pi$	0.98
Position resolution [cm]	$\sigma_{r\phi}$: 1.5 – 2.5 σ_z : 1 – 2	2 1.5
Detection efficiency ($E_{\mu} > 5 \text{ GeV}$)	92% - 99%	95%
Fake $(\pi \rightarrow \mu)@30$ GeV	0.5% - 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~60
Technology	RPC μRWell	RPC (super module, 1 layer readout, 2 layers of RPC)
	Barrel	~4450
Total area [m ²]	Endcap	~4150
	Total	~8660

Ongoing Studies

Muon system as an add-on

- Simulation study with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Complementary to Calorimeter
 - Effect as a tail catcher / muon tracker (TCMT)
 - Simulation study suggest the level of improvement seems non significant, also depends on the energy deposited in the muon detector

Non-isolated muon efficiency

- Simulation study using LICH (PFA) muon ID algorithm
- Check muons inside jets
 - Preliminary study using ZH->bb simulation sample sees much lower efficiency than isolated case
 - Room for improvement: make PFA work in harsh environment?

Energy Compensation

HCAL outer layers unused Optimized # of layer: 40

Mass resolution effect small Energy compensation < 1GeV

Future R&D

- Layout and geometry optimization using full simulation samples: detailed studies on the structure of the segments and modules. The geometry and dimensions need to be optimized together with the inner detectors, in particular the ECAL and the HCAL.
- Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays.
- Gas detectors: study aging effects, improve long-term reliability and stability.
- ✓ All detectors: improve massive and large area production procedures and readout technologies.