2HDM+S and its impact on e⁺e⁻ collisions

Bruce Mellado (Wits/iThemba LABS) on behalf of The Wits HEP group with N.Chakrabarty T.Mandal and B.Mukhopadhyaya (HRI/Uppsala) Y.Fang, Y.Zhang and M.Zhu (IHEP)

Institute of High Energy Physics, Chinese Academy of Sciences

CEPC Workshop-EU Edition, Roma Tre, 25/05/18

Outline

□The simplified model □2HDM+S

Compatibility with multilepton data

□Impact on e⁺e⁻ collisions □Outlook and Conclusions

This presentation is not a complete survey of LHC data Views expressed here are of the authors only 2

arXiv:1506.00612 arXiv:1603.01208 arXiv:1606.01674 arXiv:1608.03466 arXiv:1702.03426 arXiv:1706.02477 arXiv:1706.06659 arXiv:1709.09419 arXiv:1711.07874

The Simplified Model and 2HDM+S

The Hypothesis

- **1.** The starting point of the hypothesis is the existence of a boson, H, that contains Higgs-like interactions, with a mass in the range 250-295 GeV
- 2. In order to avoid large quartic couplings and to incorporate a mediator with Dark Matter a real scalar, S, is introduced. S interacts with the SM:

The Lagrangian

Can be embedded into 2HDM+S (N2HDM) See also M.Muhlleitner et al. arXiv:1612.01309 arXiv:1708.01578

$$\begin{split} \mathcal{L}_{K} &= \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S S, \qquad \text{arXiv:1708.01578} \\ \mathcal{L}_{SVV'} &= \frac{1}{4} \kappa_{sgg} \frac{\alpha_{s}}{12\pi v} S G^{a\mu\nu} G_{\mu\nu}^{a} + \frac{1}{4} \kappa_{s\gamma\gamma} \frac{\alpha}{\pi v} S F^{\mu\nu} F_{\mu\nu} + \frac{1}{4} \kappa_{szz} \frac{\alpha}{\pi v} S Z^{\mu\nu} Z_{\mu\nu} \\ &+ \frac{1}{4} \kappa_{sz\gamma} \frac{\alpha}{\pi v} S Z^{\mu\nu} F_{\mu\nu} + \frac{1}{4} \kappa_{sww} \frac{2\alpha}{\pi s_{w}^{2} v} S W^{+\mu\nu} W_{\mu\nu}^{-}, \\ \mathcal{L}_{Sf\bar{f}} &= -\sum_{f} \kappa_{sf} \frac{m_{f}}{v} S \bar{f} f, \\ \mathcal{L}_{HhS} &= -\frac{1}{2} v \left[\lambda_{hhS} hhS + \lambda_{hSS} hSS + \lambda_{HHS} HHS + \lambda_{HSS} HSS + \lambda_{HhS} HhS \right], \\ \mathcal{L}_{S\chi} &= -\frac{1}{2} v \lambda_{s\chi\chi} S \chi \chi - \frac{1}{2} \lambda_{sS\chi\chi} S S \chi \chi. \end{split}$$

Note that some of the effective quartic couplings shown earlier appear here as trilinear. What was formerly a three body decay is now a two body decay.

The 2HDM+S

arXiv:1606.01674

Introduce singlet real scalar, S.

2HDM potential, $\mathscr{V}(\Phi_{1}, \Phi_{2})$ = $m_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.)$ + $\frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2}$ + $\lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}|\Phi_{1}^{\dagger}\Phi_{2}|^{2}$ + $\frac{1}{2}\lambda_{5}[(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.]$ + $\{[\lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1}) + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})]\Phi_{1}^{\dagger}\Phi_{2} + h.c.\}$ 2HDM+S potential $\mathscr{V}(\Phi_{1}, \Phi_{2}) = \frac{1}{2}m_{S_{0}}^{2}S^{2} + \frac{\lambda_{S_{1}}}{2}\Phi_{1}^{\dagger}\Phi_{1}S^{2}$ + $\frac{\lambda_{S_{2}}}{2}\Phi_{2}^{\dagger}\Phi_{2}S^{2} + \frac{\lambda_{S_{3}}}{4}(\Phi_{1}^{\dagger}\Phi_{2} + h.c)S^{2}$ + $\frac{\lambda_{S_{4}}}{4!}S^{4} + \mu_{1}\Phi_{1}^{\dagger}\Phi_{1}S + \mu_{2}\Phi_{2}^{\dagger}\Phi_{2}S$ + $\mu_{3}[\Phi_{1}^{\dagger}\Phi_{2} + h.c]S + \mu_{5}S^{3}.$

Out of considerations of simplicity, assume S to be Higgs-like, leading to strong reduction of free parameters 6

The Decays of H

In the general case, H can have couplings as those displayed by a Higgs boson in addition to decays involving the intermediate scalar and Dark Matter

In a simplified model treat S as Higgs-like S branching ratios as a function of m_S (BR_{S $\rightarrow\chi\chi$} = 0.5) 10⁰ 10⁻¹ 10⁻² ggBranching ratio $\gamma\gamma$ Zy10⁻³ WWZZbb10⁻⁴ au au $\mu\mu$ 10⁻⁵ ccSS $\chi\chi$ 10⁻⁶ 140 150 160 170 180 190 200 130 m_S [GeV]

The model leads to rich phenomenology. Of particular interest are multilepton signatures

S. No.	Scalars	Decay modes
D.1	h	$b\bar{b}, \tau^+\tau^-, \mu^+\mu^-, s\bar{s}, c\bar{c}, gg, \gamma\gamma, Z\gamma, W^+W^-, ZZ$
D.2	H	D.1, hh, SS, Sh
D.3	Α	D.1, $t\bar{t}$, Zh, ZH, ZS, $W^{\pm}H^{\mp}$
D.4	H^{\pm}	$W^{\pm}h, W^{\pm}H, W^{\pm}S$
D.5	S	D.1, χχ

	Scalar	Production mode	Search channels
		$gg \rightarrow H, Hjj$ (ggF and VBF)	Direct SM decays as in Table 1
44			$ ightarrow SS/Sh ightarrow 4W ightarrow 4\ell + E_{ m T}^{ m miss}$
			$\rightarrow hh \rightarrow \gamma \gamma b \bar{b}, \ b \bar{b} \tau \tau, \ 4b, \ \gamma \gamma WW \ \text{etc.}$
9			$\rightarrow Sh$ where $S \rightarrow \chi \chi \implies \gamma \gamma, \ b\bar{b}, \ 4\ell + E_{\rm T}^{\rm miss}$
Σ	H	$pp \rightarrow Z(W^{\pm})H \ (H \rightarrow SS/Sh)$	$ ightarrow 6(5)l + E_{\mathrm{T}}^{\mathrm{miss}}$
0			$\rightarrow 4(3)l + 2j + E_{\mathrm{T}}^{\mathrm{miss}}$
0			$\rightarrow 2(1)l + 4j + E_{\mathrm{T}}^{\mathrm{miss}}$
0		$pp \rightarrow t\bar{t}H, (t+\bar{t})H (H \rightarrow SS/Sh)$	$\rightarrow 2W + 2Z + E_{\rm T}^{\rm miss}$ and <i>b</i> -jets
9			$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$
		$pp \rightarrow tH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$
Ň	H^{\pm}	$pp \rightarrow tbH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	Same as above with extra <i>b</i> -jet
	"	$pp ightarrow H^{\pm}H^{\mp} \ (H^{\pm} ightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$
		$pp \rightarrow H^{\pm}W^{\pm} (H^{\pm} \rightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$
		$gg \rightarrow A (ggF)$	$\rightarrow t\bar{t}$
	A		$ ightarrow \gamma\gamma$
	A	$gg \rightarrow A \rightarrow ZH \ (H \rightarrow SS/Sh)$	Same as $pp \rightarrow ZH$ above, but with resonance structure over final state objects
		$gg \rightarrow A \rightarrow W^{\pm}H^{\mp}(H^{\mp} \rightarrow W^{\mp}H)$	6W signature with resonance structure over final state objects

Impact on SM-like h measurements

□ The most prominent feature pertains to additional production mechanism (i.e. H→Sh) of h with large jet activity (from S→jets, model dependency). Expect distortion of the p_T spectrum, as well.

□ At this point we are studying the contamination of the H→Sh production mechanism on measurement with hadronic final states: $h+\geq 2j$, VBF, $V(\rightarrow jj)h$, $Vh(\rightarrow bb)$ (not discussed here) h signal strengths

$$\sigma(H) = 10\,\mathrm{pb}$$

Table 1. Expected yields for 36 fb^{-1} of integrated luminosity for 13 TeV proton-proton center of mass energy for the VBF, Vh event selections described in Secs. 3.1 and 3.2. The $H \to Sh$ production mechanism is compared to SM associated production mechanisms. Errors correspond to the statistical error of the MC sample.

Production mechanism	VBF $h \to \gamma \gamma$	$Vh,V\to jj,h\to\gamma\gamma$
$\overline{H(270) \to S(140)h(\to \gamma\gamma)}$	$2.86 {\pm} 0.07$	0.16 ± 0.02
$H(270) \rightarrow S(150)h(\rightarrow \gamma\gamma)$	$1.94 {\pm} 0.06$	1.14 ± 0.04
$\overline{H(270)} \to S(160)h(\to \gamma\gamma)$	$2.89 {\pm} 0.07$	$1.97 {\pm} 0.06$
$Wh(\rightarrow \gamma\gamma)$	0.22 ± 0.01	1.90 ± 0.03
$Zh(\rightarrow\gamma\gamma)$	0.14 ± 0.01	1.31 ± 0.02
$tth(\rightarrow \gamma\gamma)$	0.09 ± 0.00	0.22 ± 0.01
VBF $h(\to \gamma\gamma)$	$25.81 {\pm} 0.20$	0.30 ± 0.02

With the following inputs from Run I and Run II:

$$\mu_{fid}^{\gamma\gamma,ZZ} = 1.068 \pm 0.0745 (\exp)$$

$$\mu_{h+2j(ggF+2j)} = 1.99 \pm 0.29$$

Symptoms in Higgs data:

$$\mu_{0j,1j}^{WW} = 0.9 \pm 0.14$$

~3 σ tension driven by Run I results

- 1. More jets
- **2. Presence of soft Ws**
- 3. Elevated tth->NI

$$\mu_{Vh,V \to jj}^{II} = 2.04 \pm 1.1$$

 $\mu_{VBF} = 1.22 \pm 0.19$

and assuming $H \rightarrow Sh$, with S being SM-like, one gets:

To be updated with new results from the LHC

$$\beta_g^2 = 1.4 \pm 0.4$$

 $\mu_h = 0.79 \pm 0.12$

12

Compatibility with Multilepton data

Top associated Higgs production (Multilepton final state)

Reduced cross-section of ttH+tH is compensated by di-boson, (SS, Sh) decay and large Br(S \rightarrow WW). Production of same sign leptons, $S, h \rightarrow WW, \tau\tau, ZZ$ three leptons is enhanced. Enhanced tH cross-section

Reference	Channel	Measured μ_{tth}	
	Same-sign 2ℓ	$5.3^{+2.1}_{-1.8}$	
CMS Rup 1 [35]	3ℓ	$3.1^{+2.4}_{-2.0}$	
	4ℓ	$-4.7^{+5.0}_{-1.3}$	
	Combination	$2.8^{+1.0}_{-0.9}$	
	$2\ell0 au_{ m had}$	$2.8^{+2.1}_{-1.9}$	
	3ℓ	$2.8^{+2.2}_{-1.8}$	
ATLAS Bun 1 [36]	$2\ell 1 au_{ m had}$	$-0.9^{+3.1}_{-2.0}$	
	4ℓ	$1.8^{+6.9}_{-2.0}$	
	$1\ell 2 au_{ m had}$	$-9.6^{+9.6}_{-9.7}$	
	Combination	$2.1^{+1.4}_{-1.2}$	
	Same-sign 2ℓ	$1.7\substack{+0.6\\-0.5}$	
CMS Run 2 $[37]$	3ℓ	$1.0\substack{+0.8\\-0.7}$	
	4ℓ	$0.9^{+2.3}_{-1.6}$	
	Combination	$1.5^{+0.5}_{-0.5}$	
	$2\ell0 au_{ m had}$	$4.0^{+2.1}_{-1.7}$	
	3ℓ	$0.5^{+1.7}_{-1.6}$	
ATLAS Run 2 $[38]$	$2\ell 1 au_{ m had}$	$6.2^{+3.6}_{-2.7}$	
	4ℓ	< 2.2	
	Combination	$2.5^{+1.3}_{-1.1}$	
Error weight	1.92 ± 0.38		

Table with signal strength w.r.t the SM in the search for tth with multiple leptons

This table includes all data before Moriond QCD 2017 There CMS reported μ =1.5±0.5, resulting in:

$$\mu = 1.92 \pm 0.38$$

Very important to see results with the complete Run 2 data set.

Need insight into the kinematics of the leptons and jet activity of these events.

New results do not change picture (see below) 15

Event selection			
No lepton pair with $m_{\ell\ell} < 12 \text{ GeV}$			
$N_{b ext{-jets}} \ge 1$			
$N_{\text{jets}} \ge 1 \text{ (not including } b\text{-jets)}$			
Event categorisation			
Same-sign 2 lepton	Tri-lepton		
Exactly 2 same-sign leptons	Exactly 3 leptons		
$\ell \ell = e\mu \text{ or } \mu\mu$	Leading lepton $p_T > 25 \text{ GeV}$		
Leading lepton $p_T > 25 \text{ GeV}$	Second and third lepton $p_T > 15 \text{ GeV}$		
Sub-leading lepton $p_T > 15 \text{ GeV}$	No lepton pair with $ m_{\ell\ell} - m_Z < 15 \text{ GeV}$		

Study of SS di-lepton and 3 or more leptons with at least one

b-jet

Channel	Number of BSM candidate events	eta_g^2
$e\mu$	37.04 ± 12.10	3.03 ± 0.99
$\mu\mu$	37.22 ± 17.52	4.25 ± 2.00
Tri-lepton	6.00 ± 5.52	0.75 ± 0.69
Combined		1.69 ± 0.54

Table 2 The number of BSM candidate events and the corresponding values of β_g^2 for each channel in the CMS Run 2 search in Ref. [38] (see text). The combined result is calculated as the error weighted mean of the individual values calculated for each channel.

What appears as a ~1 σ discrepancy in terms of μ_{tth} , is coupled with a 3.1 σ effect in the distributions studied. Is μ_{tth} the measure of the compatibility of the data with the SM? Combined with the rest of μ_{tth} results leads to an effect of 3.8 σ in available multi-lep + b-jet data. 18

A prediction: H→Sh,hh→I⁺I⁻+jets+MET

Performed scan floating m_s (m_H =270 GeV), for m_{II} <100 GeV Best fit 150±5 GeV. arXiv:1711.07874

22

Measurement	Reference	Expected events	Post-fit event yield	eta_g^2	$\chi^2_{SM} - \chi^2_{SM+BSM}$
$egin{array}{l} ext{ATLAS, 20.2 fb}^{-1} \ e^{\pm}\mu^{\mp} \ N_{b ext{-jet}} \geq 1 \end{array}$	[28]	112 ± 26	397±93	4.89 ± 1.15	12.11
ATLAS, 20.3 fb ⁻¹ $e^{\pm}\mu^{\mp}$ $N_{ m jet}=0$	[29]	28 ± 6	48 ± 46	2.37 ± 2.27	0.43
ATLAS, 20.3 fb ⁻¹ $e^+e^-, \ \mu^+\mu^-$ $N_{\rm jet} = 0$	[29]	16 ± 4	82 ± 20	7.07 ± 1.73	7.31
ATLAS, 20.3 fb ⁻¹ $e^{\pm}\mu^{\mp}$ $N_{ m jet} = 1$	[30]	70 ± 16	20 ± 36	0.39 ± 0.71	0.16
CMS, 19.4 fb ⁻¹ $e^+e^-, \ \mu^+\mu^-, \ e^\pm\mu^\mp$ $N_{\rm jet} = 0$	[31]	46 ± 11	136 ± 58	4.08 ± 1.74	3.31
CMS, 19.4 fb ⁻¹ $e^+e^-, \ \mu^+\mu^-, \ e^\pm\mu^\mp$ $N_{\text{jet}} = 1$	[31]	111 ± 26	46 ± 43	0.57 ± 0.53	0.58
CMS, 5.3 fb ⁻¹ $e^+e^-, \ \mu^+\mu^-, \ e^\pm\mu^\mp$ $N_{ m jet} \ge 2, \ N_{b- m jet} \ge 2$	[32]	25 ± 6	17 ± 58	0.94 ± 3.20	-0.04

Table 1 Best fits to the di-lepton invariant mass spectra reported by ATLAS and CMS at a proton-proton centre of mass of $\sqrt{s} = 8$ TeV. The post-fit event yield reflects the number of BSM events required to fit the data (in excess of the SM prediction). The value of β_g^2 corresponding to the post-fit event yield is reported along with the test statistic $\chi^2_{SM} - \chi^2_{SM+BSM}$ in order to gauge the significance of the fit. The mass of the heavy scalar is fixed at $m_H = 270$ GeV and the mass of S is allowed to vary, where the best fit is found for $m_S = 150$ GeV. For simplicity, it is assumed that H decays exclusively into Sh.

Systematic excess in di-lepton data with predicted rate. Assuming simplified model, 3.2σ excess

arXiv:1711.07874

Interpretation of data with m_H =270 GeV and m_S =150 GeV (gg \rightarrow H \rightarrow Sh)

Data set	Extracted β_g^2
Higgs boson signal strengths, h+jets…	$\beta_g^2 = 1.38 \pm 0.32$
Leptons + b-jets	$\beta_{g}^{2} = 1.69 \pm 0.54$
Dileptons + jets	$\beta_{g}^{2} = 1.22 \pm 0.38$

$$\beta_g^2 = 1.38 \pm 0.22$$

Where the absence of BSM signal would correspond to $\beta_g^2=0$. This strong deviation from 0 does not include the analysis of the hh, VV and other deviations in the data. This is to come (paper in preparation).

Top control sample with exactly two leptons, one b-jet and no more jets. Expect relative enhancement of Wt w.r.t. tt. <u>Currently studying effect of Wt/tt interferences.</u>²⁶

Impact on e⁺e⁻ collisions

Coupling of the SM-like h boson to VV

M.Kumar et al. in preparation

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = \mathbb{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix},$$

Mass-matrix for the CP-even scalar sector will modified with respect to 2HDM and that needs a 3 x3 matrix (three mixing angles). Couplings are modified.

$$\mathbb{R} = \begin{pmatrix} c_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{2}} \\ -(c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}c_{\alpha_{3}}) & c_{\alpha_{1}}c_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} & c_{\alpha_{2}}s_{\alpha_{3}} \\ -c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{3}} & -(c_{\alpha_{1}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}}) & c_{\alpha_{2}}c_{\alpha_{3}} \end{pmatrix}$$

$$M_{\rm CP-even}^{2} = \begin{pmatrix} 2\lambda_{1}v_{1}^{2} - m_{12}\frac{v_{2}}{v_{1}} & m_{12} + \lambda_{345}v_{1}v_{2} & 2\kappa_{1}v_{1}v_{S} \\ m_{12} + \lambda_{345}v_{1}v_{2} & -m_{12}\frac{v_{2}}{v_{1}} + 2\lambda_{2}v_{2}^{2} & 2\kappa_{2}v_{2}v_{S} \\ 2\kappa_{1}v_{1}v_{S} & 2\kappa_{2}v_{2}v_{S} & \frac{1}{3}\lambda_{S}v_{S}^{2} \end{pmatrix}$$

$$\kappa(hVV) < \kappa_{SM}(hVV)$$
28

Cross-section of S through s-channel e⁺e⁻ \rightarrow **Z**^{*} \rightarrow **Zh**

Cross-section of S through t-channel e⁺e⁻→vvh

Outlook and Conclusions

- A simplified model that introduces two scalars, H and S is introduced. This simplified model is embedded into a 2HDM+S structure
- □ Phenomenology of 2HDM+S becomes more complex with respect to a plain 2HDM
- □Of particular relevance is the anomalous production of multiple leptons, which can also be produced in association with b-jets
- □Started to look at the impact on e+e-
 - □The coupling of the SM-like h to VV is reduced, which can be probed in e⁺e⁻ collisions
 - □Given current constraints from the LHC, a Higgs-like scalar, S, has sufficiently large crosssection in e⁺e⁻ with a CME around 250 GeV.

Additional Slides

Production of 4 isolated leptons Coming predominantly from production of 4W

Features:

- 1. Low backgrounds -> excellent S/B
- 2. Clean signature with fake leptons under control
- **3. Unique signature of the hypothesis**
- 4. Sensitive to the mass of H

The production of 4W from a resonance is a unique signature leading to the production of 4 isolated charged leptons and missing energy. The LHC experiments have not reported on this signature to date

Impact of extended tensor structure of SWW is small

Enhancement of tH production

In experiment, top associated Higgs production is measured as a sum of single top and double top cross sections

 \Box In the SM, we find that $\sigma_{th} \ll \sigma_{tth}$

□ For the heavy scalar considered here, $c_V \ll c_F$ □ We expect a sizeable cross section to come from top associated heavy scalar production $(\sigma_{tH} \stackrel{\sim}{=} \sigma_{ttH})$

The intermediate scalar, S

□ Dark Matter is introduced in the form of a scalar and the decay $H \rightarrow h\chi\chi$ via effective quartic couplings

$$\mathcal{L}_{\mathrm{Q}} = -rac{1}{2}\lambda_{_{Hh\chi\chi}}Hh\chi\chi - rac{1}{4}\lambda_{_{HHhh}}HHhh - rac{1}{4}\lambda_{_{hh\chi\chi}}hh\chi\chi - rac{1}{4}\lambda_{_{HH\chi\chi}}HH\chi\chi$$

Due to gauge invariance we encounter an awkward situation where a three body decay may be larger or comparable to a two body decay. This can be naturally explained by introducing an intermediate real scalar S

38

