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momentum with accurate precision. In hadronic collisions they also have to 
provide a standalone muon trigger and BX identification.
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6) of detectors interleaved in the iron yoke (or in air) at several meters from 
the IP.
The barrel part of a muon detection system has dimensions of O(104) m2, 
while the endcaps are typically about half of this size.
For evident reasons of price, gas detectors are the obvious choice for 
equipping these extremely large surfaces.
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Gas detectors used for muon detection systems can be separated into three 
main groups:

• Wire detectors (DTs, CSCs, MDT, etc.)
• Relatively simple construction, good space and time resolution
• Used extensively in the past up to LHC

• RPCs
• Simple and cheap construction, very good time resolution, poor space 

resolution (typically ~cm resolution)
• Used in many contexts, mainly as triggering devices

• Micro Pattern Gas Detectors (GEM, MicroMegas, µRWell, etc.)

• Newer technology, provides both good space and time resolution
• Can provide trigger and withstand high rates (not a problem for e+e-)
• Uses PCB methods and can be mass produced by industry.
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Muon detector characteristics

Total surface O(10000) m2
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In the baseline option, inspired from ILD, the muon detection system is 
composed of eight layers of RPC stations. 
Other options considered are Monitored Drift Tubes, Thin Gap Chambers, 
Micromegas, GEM, scintillator strips, etc.
MPGDs could provide a finer space resolution (~ 200 µm) with a similar time 
resolution at a relatively modest increase in price.
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stations interleaved in the iron return yoke. The current baseline solution 
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In the IDEA detector, the muon detection system is made of 3-4 MPGD 
stations interleaved in the iron return yoke. The current baseline solution 
employs µ-RWELL as active detector.

µ-RWELL have demonstrated very 
high detection efficiency and therefore 
no need to have more than 4 layers.

IDEA

Muon	stations

B = 2 Tesla
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There are two detector concepts for FCC-ee: the CLD (CLIC-inspired 
detector) detector model and the IDEA concept.
In the CLD detector the muon system is made of 6-7 muon stations 
interleaved in the iron return yoke, and every muon station is made of 
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Also this muon detector could be improved by adopting finer 
space resolution MPGDs. Four stations would be sufficient.

Muon	stations

CLD
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The IDEA concept, is basically the same as proposed for CepC.
The muon detection system is made of 3-4 MPGD stations interleaved in 
the iron return yoke.

Single layer µ-RWELL efficiencies of 
>95% have been obtained and 
therefore no need for many layers.

IDEA

Muon	stations

B = 2 Tesla
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SID Muon detector
9+1 layers in the barrel and 9 in the endcaps are interleaved in the iron 
return yoke.
The technology adopted is scintillator bars (4 cm wide, 1 cm thick) with 
wavelength shifting fibres and SiPM. Space resolution O(1 cm).
RPCs are considered as a possible option.

Muon	stations

B = 5 Tesla
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ILD Muon detector
14 layers in the barrel and 12 in the endcaps interleaved in the iron return 
yoke. The technology adopted is scintillator bars (2.5-3 cm wide, 7-10 mm 
thick) with wavelength shifting fibres and SiPM. Space resolution O(1 cm).
RPCs (1x1 cm2 pads) are considered as a possible option.

Muon	stations

B = 3.5 Tesla
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<10	kHz/cm2

r>1m	rate<500	kHz/cm2

<0.5	kHz/cm2

ATLAS	muon	system	HL-LHC	rates	(kHz/cm2):	
MDTs	barrel:		 	 0.28		
MDTs	endcap:		 	 0.42	
RPCs:		 	 	 0.35	
TGCs:		 	 	 2		
Micromegas	and	sTGCs:		9-10		

LHCb

HL-LHC muon system gas detector technologies, and especially MPGDs, would 
work for most of the FCC-hh detector area.

Muon detector for FCC-hh

!16
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A few personal considerations

• A typical e+e- experimental apparatus will cost anywhere between 300 and 
500 M€
• The muon detector should have a ~5% of this share, e.g. have a cost of 

~20-25 M€
• The surface of the muon detector will be ~10000 m2→ 2.5k€/m2

• A detector technology mass produced by industry, like MPGDs, should 
reach this cost

• MPGDs will offer:
• High Detection efficiency ~ 98-99% over a large solid angle
• Three space points with a sub-mm resolution along a muon track
• Redundancy is an asset, but no need to have 9-10 or more layers
• time resolution, σt, of 5-10 ns

• MPGDs could replace wire detectors, scintillator slabs and RPCs at a 
comparable price if they are mass produced by Industry
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Improve gas detectors

Reduce the size of the detecting cell (~100 µm) using chemical etching techniques 
Use PCB technology to obtain very fine electrodes O(10 µm) 
Same working principle as proportional wire chambers 

- Conversion region (low E field) 
- High E field in well localised regions where multiplication happens

Slow ion motion 
Limited multi-track separation

Reduce multiplication region size 
Faster ion evacuation 
Higher spatial resolution

S.	Franchino,	2016
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F. Sauli, NIM. A386(1997)531 

GEM	(std,	Thick,	glass,	…)	
I. Giomataris et al., NIM A 376 (1996) 

Micromegas		
(bulk,	micro	bulk,	resis;ve,	..)	

Ageing: OK (no thin wires) 
Spark protection: multiple amplification stages, resistive electrodes

S.	Franchino,	2016
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µ-PIC with resistive Diamond-LC electrodes:

Spark rate reduction using 
resistive µ-PIC for fast neutron

➢ Proposed for Phase II upgrade (~2023) 
➢ Need high granularity  ~ 0.1mm 
➢ BG rate > 100kHz/cm2 (HIP, gamma) 
➢ Rate tolerant, Pixel type detector needed

Resistive µ-PIC  
using sputtered C:

F. Yamane



e+e- Muon detectors overview - Paolo Giacomelli

µPIC / µ-RWELL for ATLAS Large-η Tagger Phase II Upgrade

!21

µ-PIC with resistive Diamond-LC electrodes:

Spark rate reduction using 
resistive µ-PIC for fast neutron

➢ Proposed for Phase II upgrade (~2023) 
➢ Need high granularity  ~ 0.1mm 
➢ BG rate > 100kHz/cm2 (HIP, gamma) 
➢ Rate tolerant, Pixel type detector needed

Resistive µ-PIC  
using sputtered C:

F. Yamane

µ-RWELL Detector:

▪ Very reliable   
▪ Almost completely discharge-free  
▪ adequate for high particle rates O(1MHz/cm2) thanks 

to the segmented-resistive-layer 
▪ suitable for large area applications (1.8 x 1.2 m2 proto 

was tested in 2017)

M. Poli Lener
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The µ-RWELL detector is composed of two elements: 
the  cathode and the µ-RWELL_PCB . Drift/cathode PCB

	

Copper	top	layer	(5µm)

DLC		layer	(0.1-0.2	µm)		
R	 	 1̴0	-200		MΩ/□

Rigid	PCB	readout	electrode

Well	pitch:	140	µm	
Well	diameter:	70-50	µm	
Kapton	thickness:		50	µm

1
2

3

µ-RWELL 

G.	Bencivenni	et	al.,	2015_JINST_10_P02008

gas gap 4-7 mm
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The µ-RWELL detector is composed of two elements: 
the  cathode and the µ-RWELL_PCB .

The µ-RWELL_PCB is realized by coupling:
1. a “suitable WELL patterned kapton foil as 

“amplification stage”

2. a “resistive stage”  for the discharge 
suppression & current evacuation
i. “Low particle rate” (LR) ~ 100 kHz/cm2:  

single resistive layer à surface resistivity 
~100 MΩ/☐ (CMS-phase2 upgrade - SHIP)

ii. “High particle rate”  (HR) > 1 MHz/cm2: 
more sophisticated resistive scheme must be 
implemented (MPDG_NEXT- LNF & LHCb-
muon upgrade)

3. a standard readout PCB

Collaboration of INFN, CERN, Eltos
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The µ-RWELL detector is composed of two elements: 
the  cathode and the µ-RWELL_PCB .

The µ-RWELL_PCB is realized by coupling:
1. a “suitable WELL patterned kapton foil as 

“amplification stage”

2. a “resistive stage”  for the discharge 
suppression & current evacuation
i. “Low particle rate” (LR) ~ 100 kHz/cm2:  

single resistive layer à surface resistivity 
~100 MΩ/☐ (CMS-phase2 upgrade - SHIP)

ii. “High particle rate”  (HR) > 1 MHz/cm2: 
more sophisticated resistive scheme must be 
implemented (MPDG_NEXT- LNF & LHCb-
muon upgrade)

3. a standard readout PCB Major advantages wrt. GEM 
• 1 kapton foil instead of 3 
• No stretching 
• Spark safe

Collaboration of INFN, CERN, Eltos
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Properties of MPGDs

!23

• Gas multiplication and/or readout are performed by “micro 

patterns” instead of conventional wire chambers

• Fine patterning realized with PCB photolithography techniques

• Fine position resolution ( ~ 200 microns )

• Good timing resolution ( < 10 nsec )

• High rate capability ( > 107 counts/mm )

• Excellent radiation hardness

• Use components that can be mass produced by industry
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• Future muon detectors at e+e- colliders will have a surface of O(104) m2

• Several detector options are being considered: MDTs, RPCs, MPGDs, etc.

• MPGDs, and in particular the µ-RWELL technology, are an excellent 
option for realising future large Muon detection systems

• An upgrade of the muon system for the baseline detector of CepC, 
substituting the RPCs with µ-RWELL detectors is an attractive opportunity

• The IDEA detector concept for CepC (and FCC-ee) implements µ-RWELL 
• This system can provide a time resolution of the order of 5 ns and a 

space resolution of ~200 µm
• Stadalone muon reconstruction
• Trace back the muon stubs to the tracker tracks
• Provide excellent momentum resolution and a robust muon trigger
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