Radiation Backgrounds for Future High Energy Electron Positron Colliders

Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group

- Interaction Region Layout
- Radiation Backgrounds
- Summary

Interaction Region

- Preliminary layout of the interaction region: extremely limited space for several critical components → trade-offs
- Optimizations required in the forward region and installation scheme to be developed → toward a more realistic design

Radiation Backgrounds, H. Zhu

Radiation Backgrounds

- Important inputs in to detector (+machine) designs, e.g. detector occupancy, radiation tolerance ...
- Have investigated the most important sources of radiation backgrounds, including
 - Pair production
 - Beam lost/off-energy particles
 - Synchrotron radiation
 - ... Extending into other less critical sources

Machine Parameters

		Higgs	W	Z (3T)	Z (2T)
	Number of IPs		2		
	Beam energy (GeV)	120	80	45.5	
	Circumference (km)	100			
	Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036	
	Crossing angle at IP (mrad)	16.5×2			
	Piwinski angle	2.58	7.0	23.8	
	Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8.0	
	Bunch number	242	1524	12000 (10% gap)	
	Bunch spacing (ns)	680	210	25	
	Beam current (mA)	17.4	87.9	461.0	
	Synchrotron radiation power (MW)	30	30	16.5	
	Bending radius (km)	10.7			
	Momentum compaction (10 ⁻⁵)	1.11			
	β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
	Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016
	Beam size at IP $s_x/s_y(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04
	Beam-beam parameters ξ_x / ξ_y	0.031/0.109	0.013/0.106	0.004/0.056	0.004/0.072
	RF voltage V _{RF} (GV)	2.17	0.47	0.10	
	F frequency f _{RF} (MHz) 650				
	Harmonic number	216816			
	Natural bunch length s _z (mm)	2.72	2.98	2.42	
	Bunch length s _z (mm)	3.26	5.9	8.5	
	Damping time $t_x/t_y/t_E$ (ms)	46.5/46.5/23.5	156.4/156.4/74.5	849.5/849.5/425.0	
	Natural Chromaticity	-493/-1544	-493/-1544	-520/-1544	-520/-3067
	Betatron tune $v_x/v_y/v_s$	363.10 / 365.22 / 0.065			
	HOM power/cavity(2cell) (kw)	0.54	0.75	1.94	
ļ	Natural energy spread (%)	0.1	0.066	0.038	
ł	Energy acceptance requirement (%)	1.35	0.40	0.23	
	Energy acceptance by RF (%)	2.06	1.47	1.70	
	Photon number due to beamstrahlung	0.29	0.35	0.55	
		100	1.4	4.0	2.4
		0.67	1.4	4.0	2.1
	F (hour glass)	0.89	0.94	0.99	
1	Luminosity/IP L (10 ³⁴ cm ⁻² S ⁻¹)	2.93	10.1	16.6	32.1

Pair Production

- Estimated as the most important background at Linear Colliders, not an issue for lower energy/luminosity machines
- Charged particles attracted by the opposite beam emit photons (beamstrahlung), followed by electron-positron pair production (dominate contributions from the incoherent pair production)

Beamstrahlung

Most electrons/positrons are produced with low energies and in the very forward region, and can be confined within the beam pipe with a strong detector solenoid;

However, a non-negligible amount of particles can hit the detector \rightarrow radiation backgrounds

Hadronic backgrounds much less critical

Radiation Backgrounds, H. Zhu

Event Generation

- Pair production process simulated with the GuineaPig program and the output fed into Geant4 detector simulation
- Long time for colliding bunches to cross each other (e.g. Higgs operation with bunch length ~3.6 mm)
- Caveat: charged particles travelling over certain distance without seeing the solenoidal field, which unfortunately introduces bias to the hit positions
- → To implement external field in the GuineaPig, feature request sent to the author (to be followed up)

Pair Production @ W/Z

• More prominent at W/Z because of event longer bunch sizes and charged particles traveling over even longer distances

Radiation Background Levels

- Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels
- Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of ×10 applied

Higgs, W and Z

- Hit density, TID and NIEL at the 1^{st} VXD layer (r = 1.6 cm) for operation at different energies
- Bunch spacing: 680 (H)/210 (W)/25 (Z) ns

Hit density (per bunch crossing)

 Δ

4

5

Pair

Production Bkg

160 GeV

Δ

Θŕ

√s= 91 GeV

√s= 240 GeV

BX]

[hits/cm².

Density |

 10^{-3}

1

2

Beam Lost Particles

- Beam particles losing energies (radiative Bhabha scattering, beam-gas interaction, beam-gas interaction, etc.) larger than acceptance kicked off their orbit → lost in the interaction region
- Two sets of collimators placed upstream to stop off-energy beam particles, sufficiently away from the beam clearance area (aperture size subject to optimization)

What shape? SuperKEKB Type (PEP-II as reference)

Effectiveness of Collimators

 Suppression of detector backgrounds, close to a factor of 100 in reduction → remaining backgrounds smaller than that from pair production and there is room for further tuning

Combined Backgrounds

- Radiation backgrounds from pair production, radiative Bhabha scattering + beamstrahlung
- Most significant contributions from the pair production 2.5 hits/cm² per bunch crossing

year]

MeV nev nev 1012 MeV nev 1011

Ξ

20

Δ

 2×10^{12} 1MeV n_{ea}/cm² per year

8

Δ.

Radiation Bkg, √s=240 GeV Combined

Pair Production

Beam Lost Particles

Synchrotron Radiation

- Beam particles bent by magnets (last bending dipole, focusing quadrupoles) emit SR photons → important at circular machines
- BDSim to transport beam (core + halo) from the last dipole to the interaction region and record the particles hitting the central beryllium beam pipe

Large amount of photons scattered^{0.03} by the beam pipe surface between^{0.01} [1, 2 m] into the central region

Collimators made with high-Z material must be introduced to block those SR photons.

Radiation Backgrounds, H. Zhu

Mask Tips

Collimator shape

With Collimation

• Three masks at 1.51, 1.93 and 4.2 m along the beam pipe to the IP to block SR photons \rightarrow shielding to the central beam pipe

• Number of photons per bunch hitting the central beam pipe dropping from 40, 000 to 80; power deposition reduced considerably

24-26 May 2018

Summary

- Preliminary interaction region design that requires further optimization
- Investigated the main radiation backgrounds that are important for detector design (pair production to be re-visited shortly); more sources of backgrounds to be included
 - Hit density: 2.5 hits/cm² per bunch crossing
 - TID: 1 MRad per year
 - NIEL: 2×10^{12} 1MeV n_{eq}/cm² per year