CEPC Physics and Detectors

João Guimarães da Costa (IHEP, Chinese Academy of Sciences)

中國科學院為能物間加完所 Institute of High Energy Physics Chinese Academy of Sciences

CEPC Workshop European Edition Rome 24-26 May 2018

The CEPC Program

Accelerator Parameters	Higgs	W	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	45	5.5
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
Lifetime (hour)	0.67	1.4	4.0	2.1
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

Current main focus

CEPC: Electron-positron collisions at 91, 160, and 240 GeV) **Higgs factory** (10⁶ Higgs)

- Precision study of Higgs (m_H, couplings)
- Looking for hints of new physics
 - **Higgs rare decays**
- Similar & complementary to ILC

Z and W factory $(10^{11} Z^0)$

- Precision test of SM
- Search for rare decays •

Flavor factory: *b*, *c*, τ and QCD studies

L (@ Z pole) > 16×10^{34} cm⁻²s⁻¹

Precision Physics Overview

W and Z precision physics

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	$2 { m MeV}$	$0.5 { m MeV}$	Z threshold scan runs	$1ab^{-1}$
m_W	$33 { m MeV}$	$2-3 { m MeV}$	WWthreshold, ZH runs	$5ab^{-1}$
A^b_{FB}	1.7%	0.1%	Z threshold scan runs	$1ab^{-1}$
$\sin^2 \hat{\theta}_W^{\text{eff}}$	0.07%	0.01%	Z threshold scan runs	$1ab^{-1}$
R_b	0.3%	0.05%	Z pole	$1ab^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5ab^{-1}$
R_{μ}	0.2%	0.01%	Z pole	1fb^{-1}

Higgs precision physics

Kaili Zhang, Yu Dan, Fangyi Guo, Li, Yanyan Gao, Xin Shi, Bayju Tomorrow

Zhijun Liang, Hengne Li, Peixu Tomorrow

	E	

Precision Physics Overview

W and Z precision physics

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	$2 { m MeV}$	$0.5 { m MeV}$	Z threshold scan runs	$1ab^{-1}$
m_W	$33 { m MeV}$	$2-3 { m MeV}$	WWthreshold, ZH runs	$5ab^{-1}$
A^b_{FB}	1.7%	0.1%	Z threshold scan runs	$1ab^{-1}$
$\sin^2 \theta_W^{\text{eff}}$	0.07%	0.01%	Z threshold scan runs	$1ab^{-1}$
R_b	0.3%	0.05%	Z pole	$1ab^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5ab^{-1}$
R_{μ}	0.2%	0.01%	Z pole	1fb^{-1}

Higgs precision physics

Kaili Zhang, Yu Dan, Fangyi Guo, Tong Li, Yanyan Gao, Xin Shi, Bayju Tomorrow

Zhijun Liang, Hengne Li, Peixun Shen Tomorrow

The physics case – theory overview

I	CEPC Conceptual Design Report: theory
	overview

Α	pril 8,	2018

6	1	1 Introduction				
7	2	CEF	C: Precision Frontier	2		
8		2.1	Higgs property measurements	2		
9		2.2	Z-pole measurements	5		
10	3	Higg	gs Physics and Electroweak symmetry breaking	6		
11		3.1	Naturalness	6		
12		3.2	Electroweak Phase Transition	17		
13	4	Exo	tica	23		
14		4.1	New physics and portals	24		
15		4.2	Higgs Exotic Decays	25		
16		4.3	Exotic Z decay	30		
17		4.4	Dark matter and hidden sectors	33		
18		4.5	Neutrino Connection	49		
19		4.6	Flavor	53		

In the final editing phase

Draft edited by:

XiaoJun Bi (IHEP) Qing Hong Cao (Peking U.) Nathanial Craig (U. California, Santa Barbara) JiJi Fan (Brown U.) Tao Liu (Hong Kong U. of Sci. Tech.) Yan Qing Ma (Peking U.) Matthew Reece (Harvard U.) Shufang Su (U. Arizona) Jing Shu (ITP) LianTao Wang (U. Chicago)

With many inputs and contributions from the International community

A few other physics highlights

Is EWPT 1st order?

Real Scalar Singlet Model ₿⁴ 0.100 HL-LHC : build 0.010 cou Ц 0.001 5 O 500 500 1TeV = SPCC / FCC-hh / ILC 1 TeV 10⁻⁴ 0.5 1.0 1.5 2.0 hhh coupling: $\lambda_3/\lambda_{3,SM}$

Dark sector search With Z rare decay

Naturalness

Inverted Ordering

Origin of neutrino mass

6

CEPC "optimistic" Schedule

Possibly concurrent with the ILC program

• CEPC data-taking starts before the LHC program ends

Detector Conceptual Designs (CDR)

Baseline detector (3 Tesla) ILD-like (similar to pre-CDR)

Low magnetic field concept (2 Tesla)

Final two detectors likely to be a mix and match of different options

Full silicon tracker concept

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)

• Jet energy resolution: $\sigma_F/E \sim 30\%/\sqrt{E}$

Manqi Ruan Tomorrow, 9:00 am

- Flavor tagging
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

CEPC baseline detector: ILD-like: Design Considerations

Major concerns being addressed

1. MDI region highly constrained L* increased to 2.2 m **Compensating magnets**

2. Low-material Inner Tracker design

3. TPC as tracker in high-luminosity **Z-pole scenario**

4. ECAL/HCAL granularity needs Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)

• Jet energy resolution: $\sigma_{\rm F}/E \sim 30\%/\sqrt{E}$

- **Flavor tagging**
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

Chengdong Fu Full silicon tracker concept Tomorrow, 12:00 pm **Replace TPC with additional silicon layers CEPC-SID: SIDB: SiD optimized 5 barrel single strip layers 6 barrel double strip layers** 5 endcap double strip layers **5 endcap double strip layers**

$ZH \rightarrow vv\mu\mu$ $\sigma(m_{\mu\mu}) = 0.21 \text{ GeV}$ Di-muon mass

Preliminary $\sigma(m_{\mu\mu}) = 0.26 \text{ GeV}$

TPC detector: $\sigma(m_{\mu\mu}) = 0.24 \text{ GeV}$

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Similar to Concept Detector for CLIC **Open for collaboration within China** Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

- **Vertex:** Similar to CEPC default
- Drift chamber: 4 m long; Radius ~30-200 cm
- **Preshower:** ~1 X₀
- **Dual-readout calorimeter: 2 m/8 λ_{int}**
- (yoke) muon chambers

Integrated into Conceptual Design Report

Dual readout calorimeter: Chapter 5

Drift chamber: Chapter 4

Muon detector (µRwell): Chapter 7

Interaction region: Machine Detector Interface

One of the most complicated issue in the CEPC detector design

Full partial double ring

Challenging eng

Sha Bai **Today, 3:00 pm**

Updated baseline parameters:

Head-on collision changed to crossing angle of 33 mrad Focal length (L*) increased from 1.5 m to 2.2 m Solenoid field reduced from 3.5 T to 3 T

incoring decian	Magnet	Field Strength	Length	Inner Radius
ineering design	QD0	136 T/m	1.73m	19 mm

13

Interaction region: Machine Detector Interface Machine induced backgrounds

- Radiative Bhabha scattering
- **Beam-beam interactions**
- Synchrotron radiation
- Beam-gas interactions ightarrow

Higgs operation $(E_{cm} = 240 \text{ GeV})$

Rates at the inner layer (16 mm): Hit density: ~2.5 hits/cm²/BX 2.5 MRad/year TID:

NIEL:

10¹² 1MeV n_{eq}/cm²

(Safety factors of 10 applied)

Hongbo Zhu **Today, 4:00 pm**

Studies for new configuration being finalized

Vertex Detector Performance Requirements

Efficient identification of heavy quarks (b/c) and T leptons

Intrinsic resolution of vertex detector

	Specs	Consequences	
Single point resolution near IP:	< 3 µm	High granularity	
First layer close to beam pipe:	r ~ 1.6 cm		
Material budget/layer:	≤ 0.15%X₀	Low power consumption, < 50 mW/cm ² for air cooling	
Detector occupancy:	≤ 1%	High granularity and short readout time (< 20 µs)	

Resolution effects due to multiple scattering

Dominant for low-p_T tracks

Target: A High granularity; A Fast readout; A Low power dissipation; A Light structure

htinuous eration mode

Baseline Pixel Detector Layout 3-layers of double-sided pixel sensors

		R(mm)	z (mm)	$ cos \theta $	$\sigma(\mu m)$	Readout tin
Ladder	Layer 1	16	62.5	0.97	2.8	20
1	Layer 2	18	62.5	0.96	6	1-10
Ladder	Layer 3	37	125.0	0.96	4	20
2	Layer 4	39	125.0	0.95	4	20
Ladder	Layer 5	58	125.0	0.91	4	20
3	Layer 6	60	125.0	0.90	4	20

Xin Shi, Zhou Yang Tomorrow, 9:30, 10:00 am

+ ILD-like layout + Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$ + Polar angle $\theta \sim 15$ degrees

Implemented in GEANT4 simulation framework (MOKKA)

- low cost ...

Performance studies: Material budget

Transverse impact parameter resolution for single muons

Requirement

Baseline includes very small material budget for beam pipe, sensor layers and supports \leq 0.15%X₀ / layer

× 2 more material 20% resolution degradation

Impact parameter resolution goal achievable but only with low material budget

17

Current R&D activities

• Initial sensor R&D targeting:

	Specs
Single point resolution near IP:	< 3-5 μm
Power consumption:	< 100 mW/cm ²
Integration readout time:	< 10-100 µs
Radiation (TID)	1 MRad

Sensors technologies:

	Process	Smallest pixel size	Chips designed	Observations
CMOS pixel sensor (CPS)	TowerJazz CIS 0.18 µm	22 × 22 µm ²	2	Founded by MOST and
SOI pixel sensor	LAPIS 0.2 µm	16 × 16 µm²	22	Funded by NSFC

- Institutions: CCNU, NWTU, Shandong, Huazhong Universities and IHEP
- New project: Full size CMOS sensor for use in real size prototype

Xin Shi, Zhou Yang Tomorrow, 9:30, 10:00 am

IHEP

Silicon Tracker Detector – Baseline **SET:** r = ~1.8 m

Not much R&D done so far

Sensor technology

1. Microstrip sensors 2. Large CMOS pixel sensors (CPS)

Power and Cooling

1. DC/DC converters

2. Investigate air cooling

ETD: z = ~2.4 m

Extensive opportunities for international participation

Time Projection Chamber (TPC)

- Allows for particle identification
- Low material budget: > 8% X₀ (without electronics and cables)
- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- Position resolution: ~100 μ m in r ϕ
- Systematics precision (<20 µm internal)
- GEM and Micromegas as readout
- **Problem: Ion Back Flow —> track distortion** • Operation at $L > 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ 2}$

Huirong Qi Tomorrow, 2:30 pm

TPC detector concept

nd activities $(2016 \sim 2020)$ NSFC (~3.5 Million RMB) nua (2016~2020) 0 Million RMB) graphene @Shandong

Time Projection Chamber (TPC)

TPC readout with micro-pattern gaseous detectors (MPGDs)

New: Micromegas + GEM

Indication that TPC operation would be feasible at high-luminosity Z factory

IBF: Ion Back Flow reduced to 0.19%

Drift Chamber Option – IDEA proposal

Lead by Italian Colleagues

and MEG2 experiments

Follows design of the KLOE

Low-mass cylindrical drift chamber

- Length: 4 m **Radius: 0.3-2m** Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)
- •

Layers: $14 SL \times 8 layers = 112$ Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

Giovanni Tassielli Tomorrow, 11:30 am

- **Spatial resolution:** < 100 dE/dx resolution: 2
- Max drift time: <400 nsec **Cells: 56,448**

MEG2 prototype being tested

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Hadronic

New

(*) SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) (*) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

(*) Dual readout calorimeters (INFN, Italy + Iowa, USA)

Baseline ECAL Calorimeter — Particle Flow Calorimeter Silicon-Tungsten Sandwich ECAL

Cell size:

- 5 x 5 mm² optimal for PFA
- 10 x 10 mm² default
- 20 x 20 mm² required for
- passive cooling

ECAL Calorimeter — Particle Flow Calorimeter Mingyi Dong, Hang Zhao Scintillator-Tungsten Sandwich ECAL Tomorrow, 9:00, 9:30 am

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: 5 x 45 mm²
- 2 mm thick: Readout/service layer

Plastic scintillator 5 x 45 mm² (2 mm thick)

Cell size: 5 x 5 mm² From ILD TDR (with ambiguity)

Layer structure

R&D on-going:

- SiPM dynamic range
- Scintillator strip non-uniformity
- Coupling of SiPM and scintillator

Mini-prototype tested on testbeam at the IHEP

26

Baseline HCAL Calorimeter — Particle Flow Calorimeter **Boxyang Yu, Bing Liu Semi-Digital HCAL** Tomorrow, 10:00, 10:30 am **SDHCAL:** multiple thresholds per channel Self-supporting absorber (steel) Prevent saturations at E > 40 GeV

Lateral segmentation: 1 x 1 cm² Total number of channels: 4 x 10⁷

Challenges

- **Power consumption** —> temperature
- Large amount of services/cables

Baseline HCAL Calorimeter — Particle Flow Calorimeter **Semi-Digital gRPC HCAL**

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the DREAM/RD52 collaboration

Dual readout (DR) calorimeter measures both: **Electromagnetic component Non-electromagnetic component**

Fluctuations in event-by-event calorimeter ncresponse affect the energy resolution le" energy losses

Measure simultaneously:

Cherenkov light (sensitive to relativistic particles) Scintillator light (sensitive to total deposited energy) Hauptman, Santoro, Ferrari Tomorrow, 11:30, 12:00, 12:30 am

Expected resolution:

EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

Several prototypes from RD52 have been built

Energy resolution for electrons

Dual Readout Calorimeter

$\cos(\text{theta}) > 0.995$ Lead by Italian colleagues: based on the Dherwinesz conaporation

Projective 4π layout implemented into CEPC simulation (based on 4th Detector Collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different depths to keep constant the sampling fraction)

Studying different readout schemes **PMT vs SiPM**

1.8m

Superconductor solenoid development Zian Zhu, Feipeng Ning Tomorrow, 3:30, 4:00 pm Updated design done for 3 Tesla field (down from 3.5 T)

Default is NbTi Rutherford SC cable (4.2K) Solutions with High-Temperature SC cable also being considered (YBCO, 20K)

Design for 2 Tesla magnet presents no problems

Superconductor solenoid development Updated design don

cept improved by FCC studies

Con

Default: Iron Yoke

Non-uniformity

9.1%

Muon detector

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- **Detection efficiency: 95%**

Technologies considered

Monitored Drift Tubes Resistive Plate Chambers (RPC) Thin Gap Chambers (TGC) Micromegas **Gas Electron Multiplier (GEM) Scintillator Strips**

Baseline: Bakelite/glass RPC

kapton reliability and stability All detectors: Improve massive and la procedures, readout technologies. Exotics/new physics search study, e.g. long lived particles

Giacomelli, Lener, Liang Li Tomorrow, 5:00, 5:30, 6:00 pm

New technology proposal: µRwell

Muon system: open studies

Full simulation samples with full deteg

yoke and magnet system

Further layout optimization: N layers Effect as a tail catcher / muon tracke Jet energy resolution with/without Gas detectors: Study aging effects, in

Optimization based on particle flow oriented detector and full simulation Geant4

Some studies done with fast simulation

DRUID, RunNum = 0, EventNum = 23

Common CEPC software tools available at: http://cepcsoft.ihep.ac/docs

K_L shower reconstructed by the Arbor algorithm

2

35

Detector optimization: Benchmark measurements

Results in CDR not fully updated for the 3 Tesla magnetic field and latest geometry

Z boson

decay

Flavor Tagging & JER: Br = 14%

Composition of Jet/MET, lepton: Br = 4%

Jet Clustering: Br = 50%

Photon/ECAL: Br = 0.2% Muon/Track: Br = 0.03%

qqH, H->inv. MET & NP: SM Br = 0.1%

EW, Br(tau->X) @ Z pole: Separation

Detector optimization

Optimized (CDR)

B Field	3 Tesla	R
TPC radius	1.8 m	Rec
TOF	50 ps	
ECAL thickness	84 mm	Op
ECAL cell size	10 mm	M better 5
ECAL num. layers	25	Dep
HCAL thickness	1 m	
HCAL num. layers	40	C

Comments

- lequired from beam emmitance
- uired by $Br(H \rightarrow \mu\mu)$ measurement
- **Pi-Kaon separation at Z pole**
- otimized for Br(H->γγ) at 250 GeV
- laximum for EW measurements, mm but passive cooling needs 20 mm
- ends on silicon sensor thickness

37

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

Draft-0 preliminary chapters available in November 2017

- Chapter 2: Physics case
- Chapter 3: Detector concepts (partial)
- * Chapter 4: Tracking system (vertex, silicon tracker, silicon-only, TPC, drift chamber) ***** Chapter 5: Calorimeter (PFA and DR calorimeter options)
- Chapter 6: Magnet system
- ***** Chapter 7: Muon system
- ***** Chapter 8: Triger and DAQ
- * Chapter 9: MDI, beam background and luminosity measurement
- ***** Chapter 10: Physics performance and expectations (partial)

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal:** A working concept on paper, including alternatives

timinar

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

October 2018: Planned release date

Soon after CEPC accelerator CDR is released

***** Delays to accommodate new accelerator design parameters and solenoid magnetic field

Still

***** Plenty of opportunities for people to contribute

***** Lots of room to make a serious impact

Weekly meetings:

https://indico.ihep.ac.cn/category/324/

(<u>http://cepc.ihep.ac.cn/preCDR/volume.html</u>)

- **Detector and Physics Conceptual Design Report (CDR)**
 - Goal: A working concept on paper, including alternatives

P-CFPC-DB-2018-XX IHEP-EP-2018-XX IHEP-TH-2018-XX

CEPC

Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group Fall 2018

Final remarks **Significant work done towards the CEPC Detector CDR *** Two significantly different detector concepts have emerged **High-magnetic field**: with TPC or full-silicon tracker ***** Low-magnetic field: with drift chamber and dual readout calorimeter **Significant amount of R&D on-going in China *** Vertex detector, TPC, calorimeters, magnets **Support from NSFC, MOST, etc MOST (2018–2023) prototype projects approved Colleagues from Italy heavily involved** * Drift chamber, dual readout calorimeter and muon chambers International collaborations expanding ***** PFA calorimeter, TPC and vertex detector

- 🖈 INFN, SLAC, Iowa State Univ., Belgrade, LLR, IPNL, LC–TPC, Liverpool, Oxford, Barcelona...

 - **CDR Expected final release:** Late 2018

40

Backup Slides

Accelerator Parameters

	Higgs	Ŵ	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	4	5.5
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04
Bunch length σ _z (mm)	3.26	5.9	8	.5
Lifetime (hour)	0.67	1.4	4.0	2.1
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

42

Accelerator Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2				
Beam energy (GeV)	120	80	45.	5		
Circumference (km)	100					
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	6		
Crossing angle at IP (mrad)	16.5×2					
Piwinski angle	2.58	7.0	23.	8		
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns	+10%gap)		
Beam current (mA)	17.4	87.9	461.	.0		
Synchrotron radiation power /beam (MW)	30	30	16.	5		
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_x/\varepsilon_y$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
RF frequency f _{RF} (MHz) (harmonic)	650 (216816)					
Bunch length σ _z (mm)	3.26	5.9	8.5	5		
Natural energy spread (%)	0.1	0.066	0.03	8		
Photon number due to beamstrahlung	0.29	0.35	0.5	5		
Lifetime (hour)	0.67	1.4	4.0	2.1		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

43

Organization of the Physics and Detector Working Group

Executive: Joao Barreiro Guimaraes Costa (IHEP) Yuanning Gao (Tsinghua Univ.) Shan Jin (Nanjing Univ.)

Machine Detector Interface

Hongbo Zhu

Vertex

Ouyang Qun Sun Xiangming Wang Meng

Tracker

Qi Huirong Yulan Li

Ruan Mangi Li Gang Li Qiang Fang Yaquan

Conveners

Physics analysis and detector optimization

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Physics_and_Detector

• MOST 1 – Funding

- SJTU, IHEP, THU, USTC, Huazhong Univ
- Silicon pixel detector ASIC chip design
- Time projection chamber detector
- Electromagnetic and hadrons calorimeter
 - High-granularity ECAL
 - Large area compact HCAL
- Large momentum range particle identification Cherenkov detector
- MOST 2 funding
 - SJTU, IHEP, Shandong U. Northwestern Tech. University

• Vertex detector

- Use 180 nm process
- Carry out the pixel circuit simulation and optimization, in order to achieve a CPS design with a small pixel depletion type, and try to improve the ratio between signal and noise;
- Focus on the small pixel unit design, reduce the power consumption and improve readout speed; time projection chamber detector
- Parameters:
 - spatial resolution to be better than 5 microns
 - integrated time to be 10–100 microseconds
 - power consumption of about 100 mW/cm².

- Time Projection Chamber
 - Based on the new composite structure, read the positive ion feedback suppression, when the detector precision is better than 100 microns.
 - Study the effect of electromagnetic field distortion on position and momentum resolution.
 - Test the main performance indicators of the readout module in the 1T magnet field. • Low power readout electronics is planed to use advanced 65nm integrated circuit technology, to achieve high density and high integration of ASIC chip design, reduce circuit power consumption to less than 5mW / channel.

 - Parameters:
 - spatial resolution to be better than 5 microns
 - integrated time to be 10–100 microseconds
 - power consumption of about 100 mW/cm².

- High granularity ECAL
 - Technical selection based on SiPM readout electromagnetic calorimeter • Realizing ECAL readout unit granularity of 5×5mm²

 - Develop small ECAL prototype;
 - Develop a set of active cooling system based on two-phase CO_2 refrigeration. • The thermal conductivity is greater than 30 mW/cm^2 in -20 degrees.
- High granularity HCAL
 - Decide technical design of digital calorimeter;
 - At a particle size of 1 cm x 1 cm, master the gas detector production process with thickness less than 6 mm; Produce the micro hole detector unit model with area of $1 \text{ m} \times 0.5 \text{ m}$. The overall gain uniformity of the detector is better than 20%. Counting rate is 1MHz/s; Produce the flat panel board with area of $1 \text{ m} \times 1 \text{ m}$
 - Detection efficiency is better than 95%.

- Particle Identification technology
 - radiation
 - Make a prototype and test it
 - Parameters:

 Combine the advantages of THGEM and MicroMegas to achieve the detection of Cherenkov light with high sensitivity, low background, high count rate and anti-

• The photon angle resolution of the Cherenkov radiation is better than 2 mrad

Vertex Detector Performance Requirements

Efficient identification of heavy quarks (b/c) and T leptons

Intrinsic resolution of vertex detector

	Specs	Consequences
Single point resolution near IP:	< 3 μm	High granularity
First layer close to beam pipe:	r ~ 1.6 cm	
Material budget/layer:	≤ 0.15%X₀	Low power consumption, < 50 mW/cm ² for air cooling
Detector occupancy:	<mark>≤ 1%</mark>	High granularity and short readout time (< 20 µs)

CDR: Chapter 4

Resolution effects due to multiple scattering

Dominant for low-p_T tracks

Target: A High granularity; A Fast readout; A Low power dissipation; A Light structure

ontinues peration mode

Current R&D activities

Initial sensor R&D targeting:

	Specs		Observations	
Single point resolution near IF	P: < 3-5 μm		Need improvement	
Power consumption:	< 100 mW/cm ²	Need to	continue trying to lower factor of 2	by a
Integration readout time:	< 10-100 µs	Ne	ed 1 µs for final detector	
sors technologies:				
	Process		Observatior	IS
CMOS pixel sensor (CPS)	TowerJazz CIS 0.18	μm	Founded by MOST	and IH
SOI pixel sensor	LAPIS 0.2 µm		Funded by NS	SFC
ry out the pixel circuit simulati letion type, and try to improve	on and optimization, i the ratio between sig	n order to nal and n	o achieve a CPS design wi oise;	ith a sı

• Se

	Specs	Observations
Single point resolution near IP:	< 3-5 μm	Need improvement
Power consumption:	< 100 mW/cm ²	Need to continue trying to lower by a factor of 2
Integration readout time:	< 10-100 µs	Need 1 µs for final detector
sors technologies:		
	Process	Observations
CMOS pixel sensor (CPS)	TowerJazz CIS 0.18	Founded by MOST and IH
SOI pixel sensor	LAPIS 0.2 µm	Funded by NSFC
ry out the pixel circuit simulation letion type, and try to improve t	n and optimization, i he ratio between sig	n order to achieve a CPS design with a si nal and noise;

- Focus on the small pixel unit design, reduce the power consumption and improve readout speed;

51

Full silicon tracker concept

Replace TPC with additional silicon layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

CEPC-SID: $\sigma = 0.21$ GeV

SIDB: $\sigma = 0.26$ GeV

Performance studies: Impact parameter resolution

Transverse impact parameter resolution for single muons

Performance studies: Material budget

Transverse impact parameter resolution for single muons

Requirement

CDR: Chapter 4

Baseline includes very small material budget for beam pipe, sensor layers and supports ≤ **0.15%X**₀

× 2 more material 20% resolution degradation

Impact parameter resolution goal achievable but only with low material budget

Performance studies: Pixel size

Transverse impact parameter resolution for single muons

CDR: Chapter 4

50% single point resolution degradation

50% impact parameter resolution degradation (for high-pt tracks)

Minimum degradation for low-pt tracks (dominated by multiple scattering)

Target **Baseline** p = 10 GeVp = 100 GeVBaseline

Performance studies: Distance to IP

Transverse impact parameter resolution for single muons

CDR: Chapter 4

56

Standard Pixel Sensor imaging Process (Tower)

CMOS 180nm

- High-resistivity (> 1k Ω cm) p-type epitaxial layer (18 μ m to 30 μ m) on p-type substrate
- Deep PWELL shielding NWELL allowing PMOS transistors (full CMOS within active area)
- Small n-well diode (2 µm diameter), ~100 times smaller than pixel => low capacitance (2fF) => large S/N
- Reverse bias can be applied to the substrate to increase the depletion volume around the NWELL collection diode and further reduce sensor capacitance for better analog performance at lower power

W. Snoeys, CEPC Workshop, Beijing, Nov 7, 2017

ALPIDE CMOS Pixel Sensor

92

90

86

		(шп	8
	ALPIDE	Resolution (7
Pixel dimensions	26.9 µm × 29.2 µm		
Spatial resolution	~ 5 µm		3
Time resolution	5-10 µs		
Hit rate	~ 104/mm²/s		0 100
^D ower consumption	< ~20-35 mW/cm ²	iciency (%)	98
Radiation tolerance	300kRad 2×10 ¹² 1 MeV n _{eq} /cm ²	etection Eff	96 94 94 94

Almost OK specifications

Need lower resolution Higer radiation tolerance

ATLAS Modified TowerJazz process

Standard process

•

Modified process

No significant circuit or layout changes required

DOI 10.1016/j.nima.2017.07.046

Irradiation tests: 1×10¹⁵ n_{eq}/cm²

Improvement of radiation tolerance by at least one order of magnitude

W. Snoeys, CEPC Workshop, Beijing, Nov 7, 2017

Optimization of TPC radius and B-field BR($H \rightarrow \mu \mu$) measurement

Detector cost sensitive to tracker radius, however:

- simulation prefers TPC with radius >= 1.8 m,
- momentum resolution ($\Delta(1/P_T) < 2 \times 10^{-5} \text{ GeV}^{-1}$)

Better:

- **Separation and Jet Energy Resolution**
- dE/dx measurement
- BR($H \rightarrow \mu\mu$) measurement

Expected Accuracy of $\sigma(XH)^*Br(H \rightarrow \mu\mu)$

Dual Readout Calorimeter

Lead by Italian colleagues: based on the DREAM/RD52 collaboration

2m long, 16.2 cm wide 19 towers, 2 PMT each Sampling fraction: 2%

2012 **RD52** Copper, 2 modules

Each module: $9.3 * 9.3 * 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 4.5%, 10 λ_{int}

Lead, 9 modules

Each module: $9.3 * 9.3 * 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 5%, 10 λ_{int}

Hauptman, Santoro, Ferrari Tomorrow, 11:30, 12:00, 12:30 am

Dual Readout Calorimeter

Lead by Italian colleagues

Hauptman, Santoro, Ferrari Tomorrow, 11:30, 12:00, 12:30

Trigger : $(T_1 \cdot T_2 \cdot \overline{T_H})$

_		

62