

$H \rightarrow ZZ^*$ SM and anomalous coupling measurement

Yanyan Gao

University of Liverpool

Summarising many contributions in the Higgs white paper under preparation

CEPC Rome workshop, 25-May-2018

The big picture

Higgs production at the CEPC

At sqrt(s)=240 GeV, assuming mH=125 GeV

At the LHC, sqrt(s) = 14 TeV: $\sigma(gg \rightarrow H \rightarrow ZZ \rightarrow 4I) = 49.85E3*1.25E-04=6.23$ fb $\sigma(pp \rightarrow ZH) = 883$ fb (limited by systematics in $H \rightarrow bb$ or BF in other decays)

All studies shown later assume integrated luminosity of 5ab-1

Higgs boson tagging using recoil mass

Z decay mode	$\Delta m_H \ ({\rm MeV})$	$\Delta\sigma(ZH)/\sigma(ZH)$
e^+e^-	14	2.1%
$\mu^+\mu^-$	6.5	0.9%
qar q	—	0.65%
$e^+e^- + \mu^+\mu^- + q\bar{q}$	5.9	0.5%

$\sigma(ZH) \times BF(H \rightarrow ff)$

 Combined with the inclusive σ(ZH) measurements, individual decay channels allow for independent Higgs boson branching fraction measurements

Z decay mode	$H \to b\bar{b}$	$H \to c\bar{c}$	$H \to gg$
$Z \rightarrow e^+ e^-$	1.3%	14.1%	7.9%
$Z \to \mu^+ \mu^-$	1.0%	10.5%	5.4%
$Z \to q\bar{q}$	0.4%	8.1%	5.4%
$Z o \nu \bar{\nu}$	0.4%	3.8%	1.6%
Combined	0.3%	3.2%	1.5%

$\sigma(ZH) \times BF(H \rightarrow ZZ^*)$

Anomalous HVV couplings

- CEPC offers a great opportunity to ping down the Lorentz structure of the $H \rightarrow ZZ$
- Scattering amplitude approach (alternative to EFT)

$$A(X_{J=0} \to VV) = \frac{1}{v} \left(g_1 m_v^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

SM Higgs High order 0+ 0-

• Define experimental measurements "effective fraction of events"

$$f_{gi} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4} \qquad f_{\rm CP} \equiv f_{g4} \equiv f_{a3}$$

Analysis tools for anomalous couplings

- "Constraining anomalous HVV interactions at proton and lepton colliders"
 - Phys. Rev. D 89, 035007 (<u>https://arxiv.org/abs/1309.4819</u>)
 - 4 theorists: K. Melnikov, F. Caola, M. Schulze, Y. Zhou
 - 7 experimentalists: I. Anderson, S. Bolognesi, Y. Gao, A.V. Gritsan, C. Martin, N. Tran, A. Whitebeck
- This paper provided a single consistent framework to estimate the ultimate sensitivities of the anomalous couplings measurements of the HVV interaction vertex
 - Developed a consistent MC to model the HVV interaction vertex in productions and decays of the Higgs for both pp and ee colliders
 - Introduce matrix element likelihood analysis (MELA) to maximising kinematics usage
 - Used a consistent statistical approach to compare HL-LHC/e+e- collider sensitivities
- Some of these tools have been adopted at the LHC (esp. MELA in CMS)

JHUGen generator

- Public generator: <u>http://www.pha.jhu.edu/~spin/</u>
 - JHU stands for Johns Hopkins University as all authors are/were JHU students/pdocs/academics

- Output lhe files, can interface with Pythia and Powheg
- Used in many LHC (CMS/ATLAS) analyses (Higgs/EXO) in the last 5 years
 - Especially in the $H \rightarrow ZZ \rightarrow 4I$ in the Higgs discovery and CP property measurements phase
 - Sustained extensive validations vs other generators (e.g. madgraph) and internal cross-checks
- e+e- collider sector is added in 2013 for this paper (US Snowmass 2013)

Couplings → Helicity amplitudes

- Rewrite the HVV amplitudes in helicity based \rightarrow kinematic distributions
 - Our earlier papers: <u>https://arxiv.org/abs/1001.3396</u> <u>https://arxiv.org/pdf/1208.4018.pdf</u>

Angular calculations \leftrightarrow helicity amplitudes

- Five angles are needed to describe the full chain
- For spin-0 resonances, if we ignore the trivial flat H->bb decay angular distribution, we end up with 3 angles
 - $\Omega = \{\theta_1, \theta_2, \phi\}$, calculated based on 4-momentum of the Higgs and Z->II
 - The 3D angular distributions, which depend on anomalous couplings through helicity amplitudes, can be analytically calculated
 - We can extract the anomalous couplings by fitting directly these angles in data

$$\frac{e^{+}(\overline{q})}{(1 + 2A_{f_{2}}\cos\theta_{2} + \cos^{2}\theta_{2})} = \frac{d\Gamma_{J=0}(s, \vec{\Omega})}{d\vec{\Omega}} \propto 4 |A_{00}|^{2} \sin^{2}\theta_{1} \sin^{2}\theta_{2}$$

$$+ |A_{+0}|^{2} (1 - 2R_{1}\cos\theta_{1} + \cos^{2}\theta_{1}) (1 + 2A_{f_{2}}\cos\theta_{2} + \cos^{2}\theta_{2})$$

$$+ |A_{-0}|^{2} (1 + 2R_{1}\cos\theta_{1} + \cos^{2}\theta_{1}) (1 - 2A_{f_{2}}\cos\theta_{2} + \cos^{2}\theta_{2})$$

$$- 4|A_{00}||A_{+0}|(R_{1} - \cos\theta_{1})\sin\theta_{1}(A_{f_{2}} + \cos\theta_{2})\sin\theta_{2}\cos(\Phi + \phi_{+0})$$

$$- 4|A_{00}||A_{-0}|(R_{1} + \cos\theta_{1})\sin\theta_{1}(A_{f_{2}} - \cos\theta_{2})\sin\theta_{2}\cos(\Phi - \phi_{-0})$$

$$+ 2|A_{+0}||A_{-0}|\sin^{2}\theta_{1}\sin^{2}\theta_{2}\cos(2\Phi - \phi_{-0} + \phi_{+0}).$$
(A2)

Ideal projections

- Compare the numerical simulation with analytical distributions at born level without cuts
 - First step of validations of both approach

Lines: analytical calculationDots: JHUGen MC
$$-0+$$
 $-f_{CP}=0.5, \varphi=0$ $-f_{CP}=0.5, \varphi=0$

• Acceptance can be parameterised using step function

$$\mathcal{G}(m_1, m_2, \vec{\Omega}) = \prod_{\ell} \theta(|\eta_{\max}| - |\eta_{\ell}(m_1, m_2, \vec{\Omega})|), \qquad (B6)$$

Proof-of-principle analysis

- Proof-of-principle analyses based on truth level quantities (no smearing)
 - Caveat: these studies need to be repeated using realistic CEPC simulation
- Event selection and efficiencies based on back-of-envelope calculations
 - Acceptance cuts: leptons pT > 5 GeV, $|\eta| < 2.4$
 - Lepton efficiency impact => overall 80% per event level
- Background events
 - Modelled with ZZ->µµbb
 - Assumed to be 10% of signal under the Higgs boson peak

	Process	Generator	nEvents (fb ⁻¹) after selection
Signal	e+e-→ZH→llbb	JHUGen	8
Background	e+e-→ZZ→llbb	Madgraph	0.8

Statistical analysis to extract couplings (e.g. fa3)

• Multi-dimensional fit to observed kinematic distribution through maximum likelihood fit

$$\mathcal{L} = \exp\left(-n_{\text{sig}} - n_{\text{bkg}}\right) \prod_{i}^{N} \left(n_{\text{sig}} \times \mathcal{P}_{\text{sig}}(\vec{x}_{i}; \ \vec{\zeta}) + n_{\text{bkg}} \times \mathcal{P}_{\text{bkg}}(\vec{x}_{i})\right)$$
observables
$$\vec{x}_{i} = \{m_{1}, m_{2}, \vec{\Omega}\}_{i}$$

$$\vec{\zeta} = \{f_{a2}, \phi_{a2}, f_{a3}, \phi_{a3}, ...\}$$

$$\mathcal{P}_{\rm sig}(\vec{x}_i; f_{a3}, \phi_{a3}) = (1 - f_{a3}) \mathcal{P}_{0^+}(\vec{x}_i) + f_{a3} \mathcal{P}_{0^-}(\vec{x}_i) + \sqrt{f_{a3}(1 - f_{a3})} \mathcal{P}_{\rm int}(\vec{x}_i; \phi_{a3})$$

- Choice of $\vec{x}_i, \vec{\zeta}$
 - Most optimal: full kinematics information in multi-dimensional space
 - Challenging: detector response and background parameterisations in multi-dimensions
 - With less statistics, one can collapse the full angular PDF into matrix element likelihood

Statistical analysis (II)

- Quantify sensitivity as the smallest f-values that can enable 3σ evidence
 - Manually scan different f_{a3} and f_{a2} values until this is met
- For each trial f-value, perform pseudo-experiments to evaluate f/σ
 - Generate 1000 pseudo-datasets (toy-data) from expected PDF
 - For each toy-data, we perform a 3D ML fit as described in previous slide
 - With one parameter fitted: fa3 or fa2 floated
 - With 2 parameters fitted: (fa3, fa2), (fa3, phia3) or (fa2, phia2)
 - Evaluate the fit outputs from these 1000 fits
 - Validate first fit performance by making sure pull distributions are as expected
 - Take Gaussian error of the fitted value as the σ
 - Iterative over several steps to find the smallest f which gives mean/ $\sigma = 3$
- These f-values obtained at CEPC are converted to the equivalent values defined for H->ZZ decays for consistent comparisons
 - Recall that the σ_2/σ_{SM} and σ_4/σ_{SM} depends on the m(Z*) which is different from CEPC and H->ZZ

Results (ID)

Results (2D)

- Central values are the discovery sensitivity obtained in the 2 fits in previous slides
- For the HL-LHC:
 - Main sensitivity of fa3 comes from the VBF $(H \rightarrow \gamma \gamma)$ and ZH productions modes rather than H->ZZ decays as the high dimensional operators get significant enhancement w.r.t. m(Z*)
 - Only $H \rightarrow ZZ$ decay channel has been feasible for the fa2

	HL-LHC	CEPC
fa2	0.06	2 × 10-4
fa3	3.7 × 10-4	1.3 × 10-4

Summary and plans

• The well defined c.o.m. and clean environment at e+e- colliders allow for rich variety of measurements and many different final states (far beyond the classic $ZH \rightarrow \mu\mu$ bb)

	~(7니)	σ(ZH)×			
	0(∠⊓)	BF(H→bb)	BF(H→cc)	BF(H→gg)	BF(H→ZZ)
Precision	0.5%	0.5%	3.2%	I.5%	5.2%
Most 2 sensitive Channels	Z→qq/µµ	Z→vv/qq		ZH→(vv)(µµqq) ZH→(µµ)(vvqq)	

- Proof-of-principle anomalous coupling measurement are presented using only $ZH \rightarrow \mu\mu$ bb
 - Based on general scattering amplitudes (independent approach w.r.t. EFT)
 - A factor of 3 improvement in the fraction of CP-violating contribution
 - <u>Two orders of magnitude improvement in the fraction of loop-induced 0+ contribution</u>
 - Need to update with state-of-the-art CEPC simulation conditions
 - Plenty room for improvements: extending to other Z-tagged final states and Higgs decays

Backup slides

HL-LHC vs e+e- colliders in f_{CP} (= f_{a3})

			HZZ/HWW				
collider	energy	\mathcal{L}	$H \to VV^*$	* $V^* \to VH$		$V^*V^* \to H$	
	GeV	fb^{-1}	f_{CP} δf_{CP}	f_{CP}	δf_{CP}	f_{CP} δf_{CP}	
pp	14000	300	0.18 0.06	6×10^{-4}	4×10^{-4}	18×10^{-4} 7×10^{-4}	
pp	14000	3000	0.06 0.02	3.7×10^{-4}	1.2×10^{-4}	$4.1 \times 10^{-4} \ 1.3 \times 10^{-4}$	
e^+e^-	250	250	\checkmark	21×10^{-4}	7×10^{-4}	\checkmark	
e^+e^-	350	350	\checkmark	3.4×10^{-4}	1.1×10^{-4}	\checkmark	
e^+e^-	500	500	\checkmark	11×10^{-5}	4×10^{-5}	\checkmark	
e^+e^-	1000	1000	\checkmark	20×10^{-6}	8×10^{-6}	\checkmark	
$\gamma\gamma$	125		\checkmark				

High-energy behaviour of ZH cross-sections

