IDEA Drift Chamber
and IDEA full tracking system

Tassielli G.F. - INFN Lecce & Mathematics and Physics Dept., University of Salento
Workshop on the Circular e^+e^- collider, May 2018, Rome
Outline

- IDEA Drift Chamber
 - Novel approach at construction technique of high granularity and high transparency Drift Chambers (From KLOE DCH to IDEA DCH)
 - Geometrical parameters
 - Cluster Counting/Timing and P.I.d. expected performance

- IDEA tracking system (DCH+SVX+PSHW)
 - Possible layouts
 - Simulation
 - Expected IDEA tracking performance
 - DCH occupancy due to incoherent e^+e^- pairs

- Summary
Novel approach at construction technique of high granularity and high transparency Drift Chambers (From KLOE DCH to IDEA DCH)

- Ancestor chamber: **KLOE** at INFN LNF Daφne Φ factory (commissioned in 1998 and currently operating)
- **CluCou** Chamber proposed for the 4th-Concept at ILC (2009)
- **I-tracker** chamber proposed for the **Mu2e experiment** at Fermilab (2012)
- **DCH** for the **MEG-II upgrade** at PSI (under commissioning)

<table>
<thead>
<tr>
<th>KLOE DCH</th>
<th>KLOE</th>
<th>MEG-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>stereo</td>
<td>Fully (~ 80 mrad)</td>
<td>Fully (~120 mrad)</td>
</tr>
<tr>
<td>diameter</td>
<td>4 m</td>
<td>0.6 m</td>
</tr>
<tr>
<td>length</td>
<td>3.3 m</td>
<td>2.0 m</td>
</tr>
<tr>
<td>structure</td>
<td>C-fiber</td>
<td>C-fiber</td>
</tr>
<tr>
<td>Gas (He-iC₄H₁₀)</td>
<td>90% - 10%</td>
<td>85% - 15%</td>
</tr>
<tr>
<td>Sense wires</td>
<td>12000</td>
<td>2000</td>
</tr>
<tr>
<td>Total wires</td>
<td>52000</td>
<td>12000</td>
</tr>
<tr>
<td>Weaker wire</td>
<td>80 µm Al</td>
<td>40 µm Al</td>
</tr>
<tr>
<td>cell size</td>
<td>2x2 - 3x3 cm²</td>
<td>0.7x0.7 - 1x1 cm²</td>
</tr>
<tr>
<td>Wire density</td>
<td>~0.4 wires/cm²</td>
<td>~12 wires/cm²</td>
</tr>
</tbody>
</table>

High wire densities prevent the use of feed-through, needing novel approaches to the wiring procedures.
Novel approach at construction technique of high granularity and high transparency Drift Chambers (From KLOE DCH to IDEA DCH)

Based on the MEG-II DCH new construction technique the IDEA DCH can meet these goals:

- **Gas containment – wire support functions separation:**

 allows to reduce material to $\approx 10^{-3} X_0$ for the inner cylinder and to a few $10^{-2} X_0$ for the end-plates, including FEE, HV supply and signal cables (Mu2e proposal design: $1.5 \times 10^{-3} X_0$ and $8 \times 10^{-3} X_0$, respectively)

- **Feed-through-less wiring:**

 allows to increase chamber granularity and field/sense wire ratio to reduce multiple scattering and total tension on end plates due to wires by using thinner wires

- **Cluster timing:**

 allows to reach spatial resolution $< 100 \mu m$ for 8 mm drift cells in He based gas mixtures (such a technique is going to be implemented in the MEG-II drift chamber under construction)

- **Cluster counting:**

 allows to reach dN_{cl}/dx resolution $< 3\%$ for particle identification (a factor 2 better than dE/dx as measured in a beam test)
DCH Geometrical parameters

tracking efficiency \(\varepsilon \approx 1 \) for \(\vartheta > 14^\circ \) (260 mrad)
97% solid angle

- 0.016 \(X_0 \) to barrel calorimeter
- 0.050 \(X_0 \) to end-cap calorimeter

112 layers
12-15 mm cell width

56,000 cells
340,000 wires
\((0.0013+0.0007 \ X_0/m)\)

12+15 mm wide square cells 5 : 1 field to sense wires ratio
56,448 cells
14 co-axial super-layers, 8 layers each (112 total) in 24 equal azimuthal (15°) sectors
\(\left(N_i = 192 + (i - 1) \times 48 \right) \)
alternating sign stereo angles ranging from 50 to 250 mrad
Cluster Counting/Timing and P.Id. expected performance

From the ordered sequence of the electrons arrival times, considering the average time separation between clusters and their time spread due to diffusion, reconstruct the most probable sequence of clusters drift times: \(\{ t_i^{cl} \} \quad i = 1, N_{cl} \)

\[
\frac{\sigma_{dE/dx}}{(dE / dx)} = 0.41 \cdot n^{-0.43} \cdot (L_{track}[m] \cdot P[atm])^{-0.32}
\]

from Walenta parameterization (1980)

truncated mean cut (70-80%) reduces the amount of collected information \(n = 112 \) and a 2m track at 1 atm give

\(\sigma \approx 4.3\% \)

Increasing P to 2 atm improves resolution by 20% (\(\sigma \approx 3.4\% \)) but at a considerable cost of multiple scattering contribution to momentum and angular resolutions.

\[
\frac{\sigma_{dN_{cl}/dx}}{(dN_{cl} / dx)} = (\delta_{cl} \cdot L_{track})^{-1/2}
\]

from Poisson distribution

\(\delta_{cl} = 12.5/cm \) for He/iC\textsubscript{4}H\textsubscript{10}=90/10 and a 2m track give

\(\sigma \approx 2.0\% \)

A small increment of iC\textsubscript{4}H\textsubscript{10} from 10% to 20% (\(\delta_{cl} = 20/cm \)) improves resolution by 20% (\(\sigma \approx 1.6\% \)) at only a reasonable cost of multiple scattering contribution to momentum and angular resolutions.
Cluster Counting/Timing and P.Id. expected performance

analytic evaluation, to be checked with detailed simulations and test beams
IDEA tracking system - Possible layouts (DCH)

<table>
<thead>
<tr>
<th></th>
<th>Base Line</th>
<th>Option 1</th>
<th>Option 2</th>
<th>dim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{in}</td>
<td>345</td>
<td>200*</td>
<td>250</td>
<td>mm</td>
</tr>
<tr>
<td>R_{out}</td>
<td>2000</td>
<td>2150</td>
<td>2000</td>
<td>mm</td>
</tr>
<tr>
<td>active area length</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>mm</td>
</tr>
<tr>
<td>total length</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>mm</td>
</tr>
<tr>
<td>total cells</td>
<td>56448</td>
<td>34560</td>
<td>52704</td>
<td>n.</td>
</tr>
<tr>
<td>layers</td>
<td>112</td>
<td>96</td>
<td>112</td>
<td>n.</td>
</tr>
<tr>
<td>Superlayers</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>n.</td>
</tr>
<tr>
<td>Layers per Superlay.</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>n.</td>
</tr>
<tr>
<td>phi sector</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>n.</td>
</tr>
<tr>
<td>smaller cell</td>
<td>11.85</td>
<td>14.2</td>
<td>11.65</td>
<td>mm</td>
</tr>
<tr>
<td>larger cell</td>
<td>14.7</td>
<td>22.5</td>
<td>15.25</td>
<td>mm</td>
</tr>
<tr>
<td>min. stereo angle</td>
<td>48</td>
<td>25</td>
<td>35</td>
<td>mrad</td>
</tr>
<tr>
<td>max. stereo angle</td>
<td>250</td>
<td>240</td>
<td>245</td>
<td>mrad</td>
</tr>
</tbody>
</table>

* not over the entire length, to avoid overlap with beam pipe etc.

A possible construction strategy is available.

Geometry is not yet optimized:
IDEA tracking system - Possible layouts (SVX)

Base line

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>Length [mm]</th>
<th>Thick [μm]</th>
<th>pixel [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
<td>600</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>600</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>330</td>
<td>1000</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>340</td>
<td>1000</td>
<td>950</td>
<td>20</td>
</tr>
</tbody>
</table>

Barrel:

Forward:

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>R_{out} [mm]</th>
<th>Zpos [mm]</th>
<th>Thick [μm]</th>
<th>pixel [μm]</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>170</td>
<td>230</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>170</td>
<td>400</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>320</td>
<td>650</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>340</td>
<td>1100</td>
<td>950</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>340</td>
<td>1500</td>
<td>950</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Option 1 (larger DCH)

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>Length [mm]</th>
<th>Thick [μm]</th>
<th>pixel [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>200</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
<td>600</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>190</td>
<td>600</td>
<td>300</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>R_{out} [mm]</th>
<th>Zpos [mm]</th>
<th>Thick [μm]</th>
<th>pixel [μm]</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>170</td>
<td>230</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>170</td>
<td>400</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>190</td>
<td>650</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>190</td>
<td>800</td>
<td>300</td>
<td>20</td>
<td>yes</td>
</tr>
</tbody>
</table>
IDEA tracking system - Possible layouts (Outer Si Layer + PSHW)

Base line

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>length [mm]</th>
<th>Thick [X_0]</th>
<th>pitch [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2005</td>
<td>2400</td>
<td>1%</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>2025</td>
<td>2400</td>
<td>1%</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>2045</td>
<td>2400</td>
<td>1%</td>
<td>250</td>
</tr>
</tbody>
</table>

Forward:

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>R_{out} [mm]</th>
<th>Zpos [mm]</th>
<th>Thick [X_0]</th>
<th>pitch [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>2000</td>
<td>2300</td>
<td>1%</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>2000</td>
<td>2325</td>
<td>1%</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>2000</td>
<td>2350</td>
<td>1%</td>
<td>250</td>
</tr>
</tbody>
</table>

Option 1 (larger DCH)

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>length [mm]</th>
<th>Thick [X_0]</th>
<th>pitch [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2155</td>
<td>2400</td>
<td>1%</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>2175</td>
<td>2400</td>
<td>1%</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>2195</td>
<td>2400</td>
<td>1%</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ly</th>
<th>R_{in} [mm]</th>
<th>R_{out} [mm]</th>
<th>Zpos [mm]</th>
<th>Thick [X_0]</th>
<th>pitch [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>2150</td>
<td>2300</td>
<td>1%</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>2150</td>
<td>2325</td>
<td>1%</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>2150</td>
<td>2350</td>
<td>1%</td>
<td>250</td>
</tr>
</tbody>
</table>

between two measurement layers there is an absorber shell equivalent to $1 X_0$ (used 6mm of Lead)
IDEA tracking system – Simulation details

- Study was performed with a standalone geant4 simulation:
 - Geant4 10.01 p03
 - Physics List: QGSP_BERT 4.0
 - 2T Constant Magnetic Field, G4ClassicalRK4 particle motion integrator
 - particles generator used: General Particle Source

- The code is organized in a modular way, the geometry description is “quite” plug and play, it is possible to import in a framework with minor changes.

- We used the ROME (developed for MEG experiment https://midas.psi.ch/rome/) framework to manage the output data and run the track fitting and reconstruction.

- The GenFit2 is interfaced to perform this preliminary study on the expected tracking system performances on track fitting.

- we simulated single muon at fixed theta 65 deg (only a quality cut on Chi^2/nDof < 25 was applied).

- we performed a scan of the resolutions as a function of the theta angle for tracks of fixed momenta (1, 10, 30, 100 GeV/c).

- We started to perform Pattern Recognition studies
IDEA tracking system – Expected tracking performance (single muon at 65 deg)

Red curve has half of the statistic of blue one

Due to not enough statistics and to less points in the SVX could be recovered by using SVX with double layers

\[\frac{\sigma_{p_t}}{p_t^2} = 3 - 4 \times 10^{-5} \]
IDEA tracking system – Expected tracking performance (single muon at 65 deg)

Angular vertex resolution:

Spatial vertex resolution:

05/25/2018 G.F. Tassielli - Cepe workshop-EU 2018, Rome
IDEA tracking system – Expected tracking performance (single muon as function of ϑ)

- **Base line option**

- **Momentum resolution:**

- **Angular vertex resolution:**

G.F. Tassielli - Cepc workshop-EU 2018, Rome
IDEA tracking system – Expected tracking performance (single muon as function of ϑ)

base line option

More than 100 Hits per tracks $-45^\circ < \vartheta < 45^\circ$
More than 60 Hits per tracks $-25^\circ < \vartheta < 25^\circ$
IDEA tracking system – Expected tracking performance PR

10 μ's (0-100 GeV), DCH only (no longitudinal info used) with Z vtx preselection of seeds

$\text{eff} \sim 99.5\%$

particle separation $\Delta \phi_0 \sim 0.005$ rad

to be tested for secondary particles with vertex out of the SVX

\begin{align*}
\text{efficiency to find 0.6nhits at 1 turn} & \text{|cos th|<0.8 over all tracks} \\
\text{efficiency to find 0.6nhits at 1 turn} & \text{P>1 GeV) over all tracks}
\end{align*}
DCH occupancy due to incoherent e⁺e⁻ pairs

using FCCsw with a preliminary DCH implementation and GUINEA-PIG to generate the incoherent e⁺e⁻ background particles at a √s of 365 GeV (thanks to Niloufar Alipour Tehrani)

expected background tracks trajectories

average DCH occupancy (400ns integration time) over 100 events ~ 2.8%
IDEA expected Higgs resolution

the ILC 4th concept detector had a central tracking system based on a similar Drift Chamber system. The tracking performance was a little bit worst than the IDEA detector

Higgs Strahlung events:
ZH $\rightarrow \mu^+ \mu^- + X$

we should expect a measure of Higgs width $\sim < 300$ MeV/c2
Summary

- We designed a ultra light Drift Chamber for the IDEA central tracking systems;
- We have a full simulation of the full IDEA tracking system (SVX+DCH+PSHW)
- The IDEA tracking system shows good performance and meet the CepC tracking requirements
- The CC technique can add a plus in particle identification (we will have a test beam on September to prove it at the momentum range of interest)
- To do:
 - work on the Pattern Recognition and test its performance;
 - optimization of the IDEA geometry configuration (SVX: n. layers and radii; DCH dimensions and cell layout);
 - perform some analysis on physics channels (like Higgs recoil mass in the Higgs Strahlung channel)
 - improve the hit makers to handle correctly the tracks pile up;
 - Simulate the dN/dx and the PID;
 - improve porting the DCH geometry etc. into the FCC framework (see Niloufar Alipour Tehrani);
 - integrate the Dual Readout calorimeter in the simulation

Thanks for your attention
Backup
The MEG2 Drift Chamber Performance

\[\sigma = 106 \, \mu m \]

\[(\text{He}/\text{iC}, H_{10} = 85/15) \]

arXiv:1605.07970

spatial resolution on 7 mm cell hits in 250 ns window both views

segment fit + turn merging
discard short segments and isolated hits

full track fit 3D track finding and fit

signa \[
\uparrow
\]
track michel tracks

G.F. Tassielli - Cepe workshop-EU 2018, Rome

05/25/2018
The MEG2 Drift Chamber Performance

\[\sigma_\phi = 6.2 \text{ mrad} \]

\[\sigma_\theta = 6.5 \text{ mrad} \]

\[\Delta p/p = 1.7 \times 10^{-3} \]

\[\sigma_p = 93.4 \text{ KeV/c} \]

\[\varepsilon \approx 90\% \]
Novel approach at construction technique of high granularity and high transparency Drift Chambers (From KLOE DCH to IDEA DCH)

- Separate the end-plate function: mechanical support for the wires and gas sealer;
- Find a feed-trough-less wiring procedure.
 - end-plates numerically machined from solid Aluminum (mechanical support only);
 - Field, Sense and Guard wires placed azimuthally by Wiring Robot with better than one wire diameter accuracy;
 - wire PC board layers (green) radially spaced by numerically machined peek spacers (red) (accuracy < 20 µm);
 - wire tension defined by homogeneous winding and wire elongation ($\Delta L = 100 \mu m$ corresponds to $\approx 0.5 g$);
 - Drift Chamber assembly done on a 3D digital measuring table;
 - build up of layers continuously checked and corrected during assembly;
 - End-plate gas sealing will be done with glue.

The solution adopted for MEG II:
2 pairs seed construction (DCH only)

Seeding from 2 pairs of hits (each pair on same layer) pointing at the origin

- 2 consecutive hits in same layer
 → 4 = 2x2 (Left-Right) pairs with direction

- 2 pairs from nearest layers compatible:
 \(| \Delta \cos(\phi \text{ (direction)} - \phi \text{ (position)}) | < 0.2, \) crossing Z inside DCH

- 1 pair with origin → \(P_t \) estimate
 (averaged over 2 pairs)

- Cross Point of 2 opposite stereo pairs give Z-coordinate
 (with \(\Delta \phi \) correction from \(P_t \))

- \(P_z = 0 \) at beginning

Z measurement give additional compatibility check between 2 hits and between 2 pairs

Combinatory low: 2 local compatibilities + 1 from opposite stereo view, but with direction angle check

Red hits projection at \(z=0 \) plane
Yellow rotated according to \(\phi \)
additional seed construction (DCH only)

Seeding from 3 hits in different layers with origin constraint

- Take any 2 free hits from different stereo layers with a gap (4 or 6 layers)
- Cross Point of 2 wires give Z-coordinate (must be inside DCH volume)
- Select nearest free hits at middle (+-1) layer
- 2 hits from same stereo layer give initial angle in Rphi
- origin added with sigma $\sigma_{Rphi} \sim 4cm$ $Z \sim 100cm$ (Mu2e case)
- Seeds constructed for all $2 \times 2 \times 2 = 8$ combination of Left-Right possibilities
- Checked that at -4 (+-1) layer are available free hits with $\chi^2 < 16$
- Extrapolate and assign any compatible hits (by χ^2) from last to first hits
- Refit segment to reduce beam constraint
- Check quality of track segment:
 - $\chi^2/NDF < 4$
 - number of hits found (≥ 7)
 - number of shared hits ($<0.4N_{found}$)

Seeding with beam constrain

Combinatory high:
local compatibility over different layers, + 1 from different stereo view