

Dual-Readout beam test results and future plans

R. Santoro¹ On behalf of the RD52 collaboration and RD-FA INFN collaboration

1) Università degli Studi dell'Insubria (COMO) and INFN (Milano)

Outline

- Dual Readout Calorimetry
- 2017 test beam results
- What next

15 years of R&D qualified the dual-readout calorimetric technique

Electromagnetic resolution:

 $\frac{\sigma_{EM}}{E} = \frac{11\%}{\sqrt{E}} \oplus 1\%$

Copper module NIM A735, 130-144 (2014)

Hadronic resolution:

Particle Identification

Different methods allow hadron/electron separation:

Workshop on the CEPC Collider, 24-26 May 2018, Roma

... what next?

The generic R&D phase has demonstrated that the dual-readout technique fulfil the requirements for future high energy lepton colliders (i.e. CEPC, FCC-ee, ILC)

Bundle of fibers (≈ 30 cm long) to bring the light towards the PMTs

... what next?

R. Santoro

The generic R&D phase has demonstrated that the dual-readout technique fulfil the requirements for future high energy lepton colliders (i.e. CEPC, FCC-ee, ILC)

Now is the time to demonstrate that this technique can be integrated into a geometry for collider experiments

Is the Silicon Photomultiplier (SiPM) a possible solution?

Bundle of fibers (≈ 30 cm long) to bring the light towards the PMTs

SiPM: short introduction

I Principles

SiPM = High density (~10⁴/mm²) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a cell, the generated charge carrier triggers an avalanche multiplication in the junction by impact ionization, with gain at the 10⁶ level

II Operation

SiPM may be seen as a collection of binary cells, fired when a photon is absorbed

Bu the output signal is proportional to the number of fired cells providing an information about the intensity of the incoming light

SiPM: short introduction

I <u>Principles</u>

SiPM = High density (~10⁴/mm²) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a cell, the generated charge carrier triggers an avalanche multiplication in the junction by impact ionization, with gain at the 10⁶ level

II Operation

SiPM may be seen as a collection of binary cells, fired when a photon is absorbed

This is what you get integrating the SiPM output signal. Each peak correspond to a specific number of cells fired.

The module under test

- The light propagated in each fiber is sensed by individual SiPMs
- The SiPMs collecting Cerenkov / scintillating light are placed on separate boards to avoid that Cherenkov light is contaminated by scintillating light. The latter is expected to be ≈ 50 time more intense

R. Santoro

Workshop on the CEPC Collider, 24-26 May 2018, Roma

The chosen SiPM

The sensor in use has 25 μ m cell pitch (S13615-1025)

2,4 1,3 anode cathode

Parametera	S13615		Linit
Parameters	-1025	-1050	Unit
Effective photosensitive area	1.0×	mm ²	
Pixel pitch	25	50	μm
Number of pixels / channel	1584	396	-
Geometrical fill factor	47	74	%
	-		

Parameters		Symbol	S13615		Linit
			-1025	-1050	Unit
Spectral response range		λ	320 to 900		nm
Peak sensitivity wavelength		λр	450		nm
Photon detection efficiency at λp^{*3}		PDE	25	40	%
Breakdown voltage		V _{BR}	53 ±5		V
Recommended operating voltage ^{*4}		V _{op}	V _{BR} + 5	V _{BR} + 3	V
Dark Count -	Тур.		50		kcps
	Max.	-	150		
Crosstalk probability	Тур.	-	1	3	%
Terminal capacitance		Ct	40		pF
Gain ^{*5}		М	7.0x10 ⁵	1.7x10 ⁶	-

FEE Board and DaQ

2 - Layer daughter board with extended cable

- Individual bias voltage with fine adjustment (3V - range) for the 64 SiPMs
- Temperature measurement for gain compensation

Mother board

- 64 DC-coupled amplifiers with $1\mu s$ shaping time to match the digitization sampling rate
- Signals routing to the digitisation system

- Two MADA boards (32 channel digitizer each)
- Sampling rate 80MSpS/14-bit ADC
- FPGA based charge integration algorithm with on-line baseline subtraction

System qualification

Real-time equalization of the sensor response

On-line system

- SiPM response to LED
- All SiPMs have been equalized in bias voltage to have the same gain (peak-peak distance)
- Sensor measurements confirmed the expected spurious effects (i.e. DCR, X_{talk})

Peak - Peak distance VS Bias

- Allows to measure the breakdown voltage for each SiPM
- It is used to adjust for temperature Gain variation

System qualification

Real-time equalization of the sensor response

On-line system

- SiPM response to LED
- All SiPMs have been equalized in bias voltage to have the same gain (peak-peak distance)
- Sensor measurements confirmed the expected spurious effects (i.e. DCR, X_{talk})

PDE (Photo-detection efficiency)

Starting from the absolute value quoted in the data sheet (25 %), the relative number of detected photons is measured as a function of bias voltage over the breakdown

 $PDE(\lambda, T, \Delta V) = QE(\lambda, T) * G_f * P_{ph-e}(T, \Delta V)$

- $QE(\lambda, T) =$ Quantum efficiency
- $G_f =$ geometrical fill factor
- $P_{ph-e}(T, \Delta V) =$ Probability of primary Ph-e to trigger the avalanche

Fibers cross-talk measurement

z max truncated to 5 fired cells

- LED light conveyed into one scintillating fiber
- All SiPMs in the matrix are readout
- It is expected that all SiPMs should register no signal except for spurious (Dark Count) events that accidentally start an avalanche in the integration window
- It was measured that:
 - Few Ph-e are contaminating the SiPMs on the same layer (≈ 1 %)
 - The contamination in the second layer is < 0.3 %

The contamination between layers is important due to the large difference in intensity for scintillating / Cerenkov light

2017 Test Beam

Assembly detail

For details: arXiv 1805.03251

Fests of a dual readour fiber calorificerer will Sithat

Test beam setup

- T_1, T_2, T_H : scintillators used in the trigger
- Delay Wire Chamber (DWG): selects events in the central region
- Preshower detector: identifies e-
- Muon counter: identifies μ

H. ARIOREIIO, M. Caccia, M.

Measurements

- Response to electron beam at different beam energies
- Response to muons

Cerenkov light yield

- Detector operated at nominal bias voltage (PDE = 25%)
- Temperature stability correction:
 - < 0.5°C during a single run (negligible)</p>
 - < 2°C during the full scan (considered)</p>

Cerenkov light yield

- Detector operated at nominal bias voltage (PDE = 25%)
- Temperature stability correction:
 - < 0.5°C during a single run (negligible)</p>
 - < 2°C during the full scan (considered)</p>

Energy containment predicted by simulation is 45%

- It is independent from beam energy
- It is almost constant when a geometrical cut of 3mm in the center is applied in the selection

A full contained electron shower is expected to have a Light yield* = 54 ± 5 ph-e/GeV

* Number corrected for the measured scintillating contamination

Scintillating light yield

- Detector operated at 0.5V over breakdown (PDE $\approx 2\%$)
- Temperature stability correction:
 - < 0.5°C during a single run (negligible)</p>
 - < 2°C during the full scan (considered)</pre>
- PDE correction for temperature variation

Scintillating light yield

Even if with low bias voltage the SiPMs are not saturating, they are working in a strongly non linear regime: a correction is required

Number of fired pixels 10 NIMA 567 (2006) 48-56 0.1 0.1 10 100 1000 10000 Number of photoelectrons

D. Renker:

Valid as a first approximation: the light uniformly illuminate the SiPMs, all photons come at the same time and spurious effects are negligible

Scintillating light yield

- Detector operated at 0.5V over breakdown (PDE $\approx 2\%$)
 - Temperature stability correction:
 - < 0.5°C during a single run (negligible)</p>
 - < 2°C during the full scan (considered)</pre>
- PDE correction for temperature variation

Once the correction is applied, even if it is not perfect, the linearity is largely improved

A full contained electron shower is expected to have a Light yield* = 3200 ph-e/GeV

* The light yield is scaled to the typical SiPM PDE (25%)

Lateral shower profile

In addition, this segmentation allowed to measure the electromagnetic lateral shower profile with an unprecedented granularity

Lateral shower profile

In addition, this segmentation allowed to measure the electromagnetic lateral shower profile with an unprecedented granularity

b)

7 8

Electromagnetic resolution:

Hadronic resolution:

Workshop on the CEPC Collider, 24-26 May 2018, Roma

Too many channels to be readout?

- If we think that the number of SiPMs are too much, we could still consider to group the analogue signals
- In this case, the main questions to be addressed are:
 - Signal Goruping: How many SiPMs can be grouped guarantying the Multi-Photon spectrum?
 - Is the space granularity something that we are ready to reduce?
 - **SiPM dynamic range:** How many cells would allow us to operate the sensor in a linear regime?

Signal Grouping

- This board allows to investigate the SiPM performances when the signals are grouped analogically (from 1 to 9 SiPMs)
- Each SiPM is individually biased
- Same FEE used in the test beam

Signal Grouping

- This board allows to investigate the SiPM performances when the signals are grouped analogically (from 1 to 9 SiPMs)
- Each SiPM is individually biased
- Same FEE used in the test beam

A strong push for larger number of cells is not an easy game.

This approach, in a first approximation, would show:

- Reduced fill factor (lower PDE)
- Higher spurious effect (higher Dark counts)
- Lower capacitance \approx lower gain and reduced possibility to see the multi-photon spectrum

Nevertheless the companies are working hard in this direction ...

SiPM dynamic range

Hamamatsu has the S13190-1010

• $10 \ge 10 \ge 10^4$ cells, PDE 10%, Typical DCR = 100 kcp, Xtalk 5%, Expected Gain ad Vop = 1.3×10^5

Crosstalkprobabilityvs. overvoltage

SiPM dynamic range

• FBK has Ultra High Density (UHD) SiPM: sensor with 5 μm pitch and 4.6 * 10⁴ cells (IEEE-explore, 24, No. 2, 2018)

Special care has to be used to reduce border region effects at the edge of the high-field region modifying the doping profile (NGR)

Fig. 4. SEM image of UHD SiPM, with 5 μ m cell pitch. The honeycomb configuration of the cells and the top polysilicon resistor are visible.

Fig. 5. Nominal fill factor comparison between different FBK SiPM technologies: non-HD, high-density, and ultra-high-density. Thanks to the technology improvements, the fill-factor is generally high, despite the smaller cell pitch. Dots represent the produced and tested variants.

30

R. Santoroorg

Workshop on the CEPC Collider, 24-26 May 2018, Roma

SiPM dynamic range

 A new design where the cells are integrated into a continuous photosensitive area (DEPHAN Solid-State Photomultipliers - SSPM). This concept has been recently proposed by S.V. Bogdanova et al.

https://dephandetectors.com

Pilot prototypes of the solid-state photomultipliers DEPHAN with 1×1 mm² surface area have amplification channels (cells) density 4.4×10^4 mm⁻² with light-sensitive area (fillfactor) **0.83**.

It was compared to the DEPHAN detector, an experimental SSPM of a new type, in which the amplifying channels (cells) are integrated into a continuous photosensitive area. Due to the new design, it became possible to increase its dynamic range by several times (cell density $4.5 \cdot 10^4$ per mm²), significantly improving the other key characteristics: fill factor > 80%, *PDE*₀~25%, and crosstalk probability < 2%.

(https://doi./10.1117/12.2290956)

Is the dynamic range not enough?

The stochastic term contribution to the EM resolution considering the latest test beam results

Too much light can always be filtered!

* The error from sampling fluctuations for both S and C channels is:
$$\varepsilon_{_{Sampling}} \sim 10.5\%$$

The relative error of the number of fired cells/GeV is:
$$\epsilon_{N_{FC}}$$

• The combined error for each channel is:
$$\varepsilon_{Combined} = \sqrt{\varepsilon_{Sampling}^2 + \varepsilon_{N_{FC/GeV}}^2}$$

• The stochastic term in the EM resolution is: $\varepsilon_{C+S} = \frac{\sqrt{\varepsilon_{Combined}^2(S) + \varepsilon_{Combined}^2(C)}}{2}$

R. Santoroorg

Workshop on the CEPC Collider, 24-26 May 2018, Roma

In short

- The SiPM seems to be a good candidate for dual-readout calorimetry
 - Allows for the $4-\pi$ geometry integration
 - Demonstrated a good linearity for Cherenkov light in the 6 125 GeV range
 - Showed twice more light yield than PMTs, reducing the stochastic terms contribution to the energy resolution
 - Allowed unprecedented spatial segmentation

... but

- The light contamination between scintillating and Cerenkov light has to be further reduced
- The linearity response for the scintillating fibers has to be improved (SiPMs with larger dyn-range or filters are needed)
- Signal grouping can be considered to reduce the number of channels (i.e. lower power consumption)
- ASICS have to be considered for the readout