

Beam-Beam Effect & Dynamic Aperture at CEPC

Y. Zhang, D. Wang, Y. Wang, C. Yu

24~26 May, 2018, Rome

Workshop on the Circular Electron-Positron Collider - EU edition

Acknowledgements: K. Ohmi(KEK), D. Shatilov(BINP), K. Oide(CERN,KEK), D. Zhou(KEK)

Outline

- Introduction
- Beam-Beam Effect at H/W/Z
- DA w/ and w/o Beam-Beam Interaction
- Summary

Beam-beam parameter in early machines

TRISTAN

LEP

0.040

0.034

0.035

30.4

45.6

4

4

4

J. Seeman, "Observations of the beam-beam interaction", 1985

Machine Parameters of the KEKB (June 17 2009)

	LER	HER		
Circumference	30	m		
RF Frequency	508.88		MHz	
Horizontal Emittance	18	24	nm	
Beam current	1637	1188	mA	
Number of bunches	1584			
Bunch current	1.03	0.750	mA	
Bunch spacing	1.	m		
Bunch trains	1			
Total RF volatage Vc	8.0	13.0	MV	
Synchrotron tune V_s	-0.0246	-0.0209		
Betatron tune v_x / v_y	45.506/43.561	44.511/41.585		
beta's at IP $oldsymbol{eta}_x^*$ / $oldsymbol{eta}_y^*$	120/0.59	120/0.59	cm	
momentum compaction a	3.31 x 10 ⁻⁴	3.43 x 10 ⁻⁴		
Estimated vertical beam size at IP from luminosity $\sigma_{_y}^*$	0.94	0.94	μm	
beam-beam parameters Sx 7 Sy	0.127/0.129	0.102/0.090	Λ	
Beam lifetime	133@1637	200@1188	min.@mA	
Luminosity (Belle CsI)	21	10 ³³ /cm ² /sec		
Luminosity records per day / 7days/ 30days	1.479/8.4	/fb		

 $\xi_y \sim 0.1$

Beam-Beam Parameter at LEP

• Vertical Beam-Beam Parameter measured at LEP

http://tlep.web.cern.ch/content/accelerator-challenges

R. Assmann

CEPC Parameters

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs	2				
Beam energy (GeV)	120	80	45.5		
Circumference (km)	100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)	16.5×2				
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10% gap)		
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)	10.7				
Momentum compact (10 ⁻⁵)	1.11				
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_{x}/\varepsilon_{y}$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_r / \sigma_v (\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x / ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)				
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_{z} (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.29	0.35	0.55		
Lifetime _simulation (min)	100			-	
Lifetime (hour)	0.67	1.4	4.0	2.1	
<i>F</i> (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Crab-Waist Compensation

Collision with large Φ is not a new idea

Crab-Waist transformation is !

L_{geometric} gain x-y synchro-betatron and betatron resonance suppression

P. Raimondi, 2° SuperB Workshop, March 2006 P.Raimondi, D.Shatilov, M.Zobov, physics/0702033 C. Milardi et al., Int.J.Mod.Phys.A24, 2009 M. Zobov et al., Phys. Rev. Lett. 104, 2010

ξ

1.6 4.53 (5.0) 1.50 1.52 1 1.1 106 105 ε_{x} [mm mrad] 0.34 0.34 0.28 β_{x} [m] 1.5 0.25 2. 0.9 β_v [cm] 1.8 1.9

0.0291

0.0443 (0.074)

DA Φ NE Luminosity and Tune Shift

KLOE

0.0245

Luminosity as a function of colliding currents CW-Sextupole excitation 5 10³ⁱ L CW SXT. OFF Feb. 9h 2009

C. Milardi

Simulation of Beamstrahlung

K. Ohmi

$$\Delta s = (z_i - z_{i+1})/2$$

$$\frac{1}{\rho_{xy}} = \frac{\Delta p_{xy}}{\Delta s} \qquad \frac{1}{\rho} = \sqrt{\frac{1}{\rho_x^2} + \frac{1}{\rho_y^2}}$$

$$u_c = \hbar \omega_c = \frac{3\hbar c\gamma^3}{2\rho}$$

$$n_\gamma = \int_0^\infty \frac{dn_\gamma(\omega)}{d\omega} d\omega = \frac{5\sqrt{3}}{6\rho} \Delta s$$

$$\frac{dn_{\gamma}(\omega)}{d\omega} = \frac{\sqrt{3}\alpha\gamma\Delta s}{2\pi\rho\omega_c}S(\frac{\omega}{\omega_c}) \qquad S(\xi) = \int_{\xi}^{\infty}K_{\frac{5}{3}}(y)dy$$

Beamstrahlung lifetime

• Analysis [V. Telnov, Phys. Rev. Letters 110 (2013) 114801]

$$\tau_{BS} \approx \frac{1}{n_{IP} f_{rev}} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\delta_{acc}}{\alpha r_e}} \exp\left(\frac{2}{3} \frac{\delta_{acc} \alpha}{r_e \gamma^2} \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right) \frac{\sqrt{2}}{\sqrt{\pi} \sigma_z \gamma^2} \left(\frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right)^{3/2}$$

• Calculated by beam distribution K. Ohmi

$$\tau_{bs} = \frac{\tau_z}{2Af(A)}$$

- *A* is the boundary of momentum acceptance in action,
- f(J) is the distribution of action with beam-beam, $\int_0^\infty dJ f(J) = 1$
- τ_z is the longitudinal damping time

If the machine parameter is reasonable

- Limit of bunch population by beam-beam interaction
 - Beamstrahlung lifetime
 - If X-Z instability is suppressed
 - If Asymmetric Collision is OK
 - If there exist large enough stable working point space
 - If Beam-beam parameter is safe enough

Tune Scan

The error bar shows the turn-by-turn luminosity difference.

K. Ohmi and etal., DOI:10.1103/PhysRevLett.119.134801

X-Z instability @(0.535,0.61)

ne=15e10, e+

W

Bootstrapping 2.2 σ_{z1}/σ_{z0} 2 σ_{z2}/σ_{z0} 1.8 1.6 Np $\propto \frac{\alpha_p \sigma_\delta \sigma_z}{\beta_x^*}$ (K. Oide) 1.4 $N_{\rm p} = 4.0 \cdot 10^{10}$ $N_{\rm p} = 4.0 \cdot 10^{10}$ $N_{\rm p} = 5.0 \cdot 10^{10}$ $N_{\rm p} = 5.0 \cdot 10^{10}$ $N_{\rm p} = 6.0 \cdot 10^{10}$ 1.2 $N_{\rm p} = 4.0 \cdot 10^{10}$ $N_{\rm p} = 4.5 \cdot 10^{10}$ $N_{\rm p} = 4.5 \cdot 10^{10}$ $N_{\rm p} = 5.5 \cdot 10^{10}$ $N_{\rm p} = 5.5 \cdot 10^{10}$ 1 8.0 Ο 5000 10000 15000 20000 25000 35000 40000 1.08 1.07 1.06 1.05 1.04 1.03 1.02

5000

10000

15000

1.01

1 Ο D. Shatilov

45000

 $\varepsilon_{x1}/\varepsilon_{x0}$

 $\varepsilon_{x2}/\varepsilon_{x0}$

45000

40000

50000

50000

The maximum bunch charge is determined considering the balance of ٠ beamstrahlung, momentum acceptance, and the capability of injector.

20000

25000

30000

35000

RMS size Evolution during Bootstrapping @ Qx=0.555

Beam-beam Parameter Evolution During Bootstrapping @ Qx=0.555

Bunch Current Limit

RMS Size Evolution with higher bunch population

Horizontal Tune with Ne= 12×10^{10}

• Collision is stable in the range of [0.552, 0.555]

Bootstrapping is necessary? (15e10*15e10)

Ζ

Beam-beam Parameter Evolution During Bootstrapping

Bunch Current Limit

Horizontal Tune with Ne= 15×10^{10}

• Collision is stable in the range of [0.562, 0.568]

Z: Bootstraping is necessary? (ne=12e10, qx=0.568)

β_y^* =1.5mm->1mm (with Lower Solenoid Strength)

With same beam current,

- smaller β_y^* +weaker solenoid, luminosity increase by a factor of one.
- bunch population increase from 8×10^{10} to 12×10^{10} , luminosity increase about 20%.

β_y^* =1mm, Horizontal Tune with Ne=12 × 10¹⁰

• Collision is stable in the range of [0.562, 0.568] Dynamic Aperture

DA: w/o and w/ beam-beam interaction ^{100 samples} 90% survival

DA: w/o and w/ beam-beam interaction

Beam Distribution: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

Beam Lifetime: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

100min, DA requirement: 7.5 σ_x , 12.5 σ_y , 0.0135

Achieved DA: ~15 σ_x , ~15 σ_v , ~0.015

Summary

- The present beam-beam parameter is about two times higher than that of LEP experience, which is the benefit of crab-waist.
 - Higgs is mainly limited by beamstrahlung lifetime
 - W nearly reaches the beam-beam limit
 - It seems we could increase bunch population by 50% for Z
- New x-z instability limit the choice of horizontal working point
- The strong-strong simulation shows that bootstrapping may be unnecessary at CEPC as far as beam-beam is concerned
- Initial result shows that the beam-beam interaction does not reduce the DA seriously