Workshop on the Circular Electron-Positron Collider - EU edition Università degli Studi Roma Tre, 24-26 May 2018

Outline

***** why BSM

- * CepC "fields of expertise"
- ***** indirect effects: Higgs, Z, WW, ff precision physics
- * weakly coupled particles production (WIMPs, heavy sterile neutrinos, ...)

* Exotics

***** massless Dark Photons in e+e- collisions

* Outlook

(input from CepC, ILC, CLIC, FCC-ee studies)

huge (although hazy) expectations for new BSM phenomena at colliders !

* two kinds of issues with the SM :

* existence of "external" phenomena :

what's so tricky about the Higgs

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - V(\phi^{\dagger}\phi) - \bar{\psi}_{L}\Gamma\psi_{R}\phi - \bar{\psi}_{R}\Gamma^{\dagger}\psi_{L}\phi^{\dagger}$$
$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \frac{1}{2}\lambda(\phi^{\dagger}\phi)^{2}$$
$$m_{H}^{2} = 2\mu^{2} = 2\lambda v^{2}$$

***** the only "fundamental" scalar particle (microscopic interpretation ?)

★ not protected by symmetries (the less constrained SM sector):
 ★ naturalness problem : m_H ~ g × Λ_{cutoff}
 ★ many different couplings all fixed by masses (?)
 ★ proliferation of parameters historically leads to breakdown in TH models
 ★ fermion masses/Yukawa's hierarchy (?)

* have neutrinos a special role ?!!!

 \Rightarrow λ determines shape and evolution of Higgs potential \Rightarrow cosmology !

four paths to advance in HEP today at colliders:

- ***** by exploring the characteristics of the Higgs sector and confirming/spoiling the SM picture (primary relevance since the Higgs sector is so critical !)
- by searching for new heavy states coupled to the SM, [acting as a cut-off for the SM possibly solving the naturalness issues and/or non-SM phenomena (dark matter, ...)]
- ★ by exploring ∧ >> o(1TeV) indirect effects through high-accuracy studies of SM x-sections/distributions and searches for rare processes (EFT parametrization)
- by looking for new DARK states (i.e., uncoupled to SM at tree level) either in production or/and heavy-state (H,t...) decays (elusive signatures, may be long-lived p.les)

four paths to advance in HEP today at colliders:

* every single method is of fundamental importance to make progress !

★ e+e- colliders great opportunities in all sectors (cleanness [→ model independence], accuracy...)

BSM impact on Higgs couplings

* up to few percent for natural model not showing up by heavy states production at LHC

	$\Delta g(hVV)$	$\Delta g(ht\overline{t})$	$\Delta g(hb\overline{b})$
Composite Higgs	10%	tens of $\%$	tens of $\%$
Minimal Supersymmetry	< 1%	3%	tens of $\%$
Mixed-in Singlet	6%	6%	6%

***** different patterns of deviations from SM for different NP models

	Model	$b\overline{b}$	$c\overline{c}$	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
1	MSSM [38]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
2	Type II 2HD $[39]$	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
3	Type X 2HD $[39]$	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
4	Type Y 2HD $[39]$	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
5	Composite Higgs $[40]$	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
6	Little Higgs w. T-parity $[41]$	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
7	Little Higgs w. T-parity $[42]$	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
8	Higgs-Radion $[43]$	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5
9	Higgs Singlet [44]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

CERN, 17 January 2018

Higgs coupling accuracy in e+e- (EFT approach)

	ILC250	CLIC350	CEPC	FCC-ee	ILC250+500
(%)	$\frac{2}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	$2 ab^{-1}_{-1}$	$5_{5}ab^{-1}_{-1}$	$+155ab^{-1}_{-1}$	fulliffc
arXiv:1708.08912	₩: <u>88</u> !:	350 GeV	no pol.	$a_{at}^{\dagger}3\overline{390}$ GeV	259555666EV
g(hBB)	1 <u>1</u> 04	1108	00988	06.86	0.558
$g(h \in \overline{\epsilon})$	$1_{1}.79$	223	1.42	1.152	1.992
g(hgg)	1160	1165	1.p.g	00999	0.895
g(hWW)	0.65	Ø. 56 6	00.880	00422	0.3.34
g(h au au)	11.126	1134	1.06	007.\$5	0.0.174
g(hZZ)	0.68	Ø.577	008\$0	00422	0.3.35
$g(h\gamma\gamma)$	11.220	1113	1.26	1. Q A)	1.010
g(huuu)	553	5577	5.5.0	44887	4.951
g(hbb)/g(hWW)	0.88	(D.990)	005588	0.0551	0.4346
g(hWW)//g(hZZ)	0:07	Ø.066	0.0077	0.0066	0.055
Γ_{h_l}	22:358	2 255	2. 4 . 1	1.495	1.506
$\mathcal{B}(\mathbb{R}(h \to in\mathbb{Z}))$	0:30	Ø.56	0.0530	0.0227	0.6.29
$BR(h \Rightarrow qthe)r)$	$0^{1}.3^{6}$	0.156	0.90	0.294	0.282
$BR(h \rightarrow other)$	1.50	1.63	1.09	0.94	1.15

HL-LHC (K fit) versus adding e+e- (250 GeV, 2ab-1) (EFT fit)

EWPT at the Z pole

★ order-of-magnitude improvement from CepC
→ probe NP scale up to o(10-100) TeV !

Barbara Mele

CERN, 17 January 2018

Barbara Mele

CERN, 17 January 2018

heavy sterile neutrinos

sterile neutrinos at CepC and FCC

★ for M_{nu}>>TeV → best
 sensitivity from EWPT@ee
 ★ for light M_{nu} → best
 sensitivity from displaced
 vertices @ ee

- EWPOs @ 2σ : $|\Theta|^2 = |\theta_e|^2 + |\theta_\mu|^2$
- ----- EWPOs @ 2σ : $|\Theta|^2 = |\theta_\tau|^2$

S. Antusch, E. Cazzato, OF; Int. J. Mod. Phys. A 32 (2017) no.14, 17500

Barbara Mele

Exotic Higgs decays

★ e+e- environment superior on final states with MET and hadronic activity → BR sensitivity better than 10⁻³

95% C.L. upper limit on selected Higgs Exotic Decay BR

Zhen Liu, Hao Zhang, LT Wang 1612.09284

CERN, 17 January 2018

Exotic Z decays

CERN, 17 January 2018

* long list of models/signatures

Br[Z]

 10^{-6}

 10^{-7}

10⁻⁵ 10⁻⁴

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-10}

10-9

 10^{-8}

10⁻¹² 10⁻¹¹

Liu, Wang, Wang, Xue, 1712.07237

exotic decays	topologies	n _{res}	models	$1A: Z \rightarrow \chi_1 \chi_2 \rightarrow \chi_1 \chi_1 \gamma$
	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	1A: $\frac{1}{\Lambda_{1A}} \bar{\chi_2} \sigma^{\mu\nu} \chi_1 B_{\mu\nu}$ (MIDM)	$1B:7 \rightarrow VT \gamma$
$Z \rightarrow F + \alpha$	$Z o \chi \bar{\chi} \gamma$	0	1B: $\frac{1}{\Lambda_{1B}^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)	$ID.Z \rightarrow \chi \chi \gamma$
$\Sigma \rightarrow I\!$	$Z \to a\gamma \to (\not \! E)\gamma$	1	1C: $\frac{1}{4\Lambda_{1C}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$ (long-lived ALP)	$1C: Z \rightarrow a \gamma \rightarrow MET + \gamma$
	$Z \to A'\gamma \to (\bar{\chi}\chi)\gamma$	1	1D: $\epsilon^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (WZ terms)	$2A: Z \to \phi_d A' \to (\gamma \gamma)(\chi \overline{\chi})$
	$Z \to \phi_d A' , \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	2A: Vector portal	$2C_{1}Z_{2}$
$Z \to E \!\!\!\!/ + \gamma \gamma$	$Z \to \phi_H \phi_A, \phi_H \to (\gamma \gamma), \phi_A \to (\bar{\chi} \chi)$	2	2B: 2HDM extension	$2 \subset Z \rightarrow \chi_2 \chi_1 \rightarrow (\gamma \gamma) \chi_1 \chi_1$
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	2C: Inelastic DM	$2D:Z \rightarrow \chi_2 \chi_2 \rightarrow \gamma \chi_1 \gamma \chi_1$
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	2D: MIDM	$3A: Z \to \phi_d A' \to (\chi \overline{\chi})(l^+ l^-)$
	$Z \to \phi_d A', A' \to (\ell^+ \ell^-), \phi_d \to (\bar{\chi}\chi)$	2	3A: Vector portal	$3B\cdot7 \rightarrow A'SS \rightarrow (l^+l^-) + MET$
$Z \to \not\!\!\!E + \ell^+ \ell^-$	$Z \to A'SS \to (\ell\ell)SS$	1	3B: Vector portal	$3D.Z \rightarrow A 3S \rightarrow (l l) + MIEI$
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	3C: Long-lived ALP, Higgs portal	$3E: Z \rightarrow \chi_2 \chi_1 \rightarrow l^+ l^- + MET$
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not\!$	1	3D: Vector portal and Inelastic DM	$3F:Z \rightarrow \chi \overline{\chi} l^+ l^-$
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	3E: MIDM, SUSY	$(\Lambda, 7, \Lambda, \Lambda) \to (\Lambda, 7)$
	$Z \to \bar{\chi} \chi \ell^+ \ell^-$	0	3F: RayDM, slepton, heavy lepton mixing	$4A.Z \rightarrow \psi_d A \rightarrow (\chi \chi) (J)$
	$Z \to \phi_d A' \to (\bar{\chi}\chi)(jj)$	2	4A: Vector portal	$4B:Z \rightarrow \phi_d A' \rightarrow (b\overline{b})(\chi\overline{\chi})$
$Z \to E \!\!\!\!/ + JJ$	$Z \to \phi_d A' \to (bb)(\bar{\chi}\chi)$	2	4B: Vector portal + Higgs portal	$4C: Z \rightarrow \chi_2 \chi_1 \rightarrow \chi_1 \chi_1 b \overline{b}$
	$Z \to \chi_2 \chi_1 \to bb\chi_1 + \chi_1 \to bb \not\!$	0	4C: MIDM	$5 \wedge 7 \rightarrow 4 \wedge 1 \rightarrow (3)$
	$Z \to \phi_d A', \phi_d \to jj, A' \to jj$	2	5A: Vector portal + Higgs portal	$3A.Z \rightarrow \psi_d A \rightarrow (j)(j)$
$ Z \to (JJ)(JJ) $	$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to jj$	2	5B: vector portal + Higgs portal	$5B:Z \rightarrow \phi_d A' \rightarrow (b\overline{b})(jj)$
	$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to b\bar{b}$	2	5C: vector portal + Higgs portal	$5C:Z \rightarrow \phi_d A' \rightarrow (b\overline{b})(b\overline{b})$
$Z o \gamma \gamma \gamma$	$Z \to \phi \gamma \to (\gamma \gamma) \gamma$	1	6A: ALP, Higgs portal	
Barbara Mele		L	J. Roma Tre, 24 May 2018	

Looking for Dark Photons in ee $\rightarrow \gamma A'$

CEPC may have advantage probing dark photon at 10 to a few 10s ($<<m_7$) GeV mass range.

CERN, 17 January 2018

μ+

what if Dark-Photon mass vanishes ?

<u>massive DP</u>

<u>massless DP</u>

only

direct coupling to SM no direct coupling to SM

on-shell massless DP's can be fully decoupled from SM sector at tree level !

B. Holdom, Phys. Lett. 166B (1986) 196

massless DP's interact with the SM sector only through higher-dimensional (\rightarrow suppressed by 1/M^{D-4}) interactions via messenger (if any) exchange !

evading most of present exp bounds on massive DP's !

potentially large DP couplings $\bar{\alpha}$ in the Hidden Sector (HS) allowed !

massless-Dark-Photon signatures :

when produced in collisions :

Flavor models predicting both flavour hierarchy and DM include massless dark-photons

Gabrielli, Raidal, arXiv:1310.1090 (PRD)

Explaining Yukawa hierarchy via HS and extra $U(1)_F$

Hidden Sectors (HS) possibly explaining
Flavor hierarchy + Dark Matter
Gabrie

Gabrielli, Raidal, arXiv:1310.1090

- Yukawa's are not fundamental constants
 but effective low-energy couplings
 (-> scalar messengers transfer radiatively Flavor and
 Chiral Symm. Breaking from HS fermions to SM fermions
 giving Yukawa couplings at one-loop)
- ▶ introducing extra unbroken $U(1)_F$ → massless DP's
- ▶ for integer-q(dark fermions) sequence : $M_{D_f} \sim \exp(-\frac{\kappa}{q_{D_f}^2 \bar{\alpha}})$ → exponential hierarchy in M(Dark fermions)
 → exponential hierarchy in radiative Y(SM fermions) !! OP
 Dark fermions as dark-matter candidates

massless-Dark-Photon production mechanisms

plenty of new signatures !

* via Higgs bosons
both in production and decay...

Dobrescu, hep-ph/0411004 (PRL) Gabrielli,Heikinheimo, BM, Raidal, arXiv:1405.5196 (PRD) Biswas, Gabrielli, Heikinheimo, BM, arXiv:1603.01377 (PRD)

* via FCNC mediated by Dark Photon's new class of FCNC signatures from top, b, c, s, tau, mu decays $f \rightarrow f' \bar{\gamma}$ (very distinctive \rightarrow bounds expected to be just limited by statistics in e⁺e⁻ !)

*** via Z bosons** (evading Landau-Yang theorem)

 $Z \rightarrow \gamma \bar{\gamma}$

Dobrescu, hep-ph/0411004 (PRL) Gabrielli, BM, Raidal, Venturini, arXiv:1607.05928 (PRD) Fabbrichesi, Gabrielli, BM, arXiv: 1705.03470 (PRL)

Fabbrichesi, Gabrielli, BM, arXiv: 1712.05412 (PRL)

Higgs as a "source" of Dark Photons

Dobrescu, hep-ph/0411004 (PRL) Gabrielli,Heikinheimo, BM, Raidal, arXiv:1405.5196 (PRD) Biswas, Gabrielli, Heikinheimo, BM, arXiv:1603.01377 (PRD)

massless (invisible) Dark Photon

 $H\to \bar\gamma\bar\gamma$ contributing to $\Gamma\mathrm{H}^\mathrm{inv}$

Higgs non-decoupling effects can enhance BR up to a few %!

$$\Gamma(H o \gamma ar{\gamma}) \sim rac{1}{M_{Heavy}^2} o rac{1}{v^2}$$

model-independent bounds @ LHC 14 TeV

(including shower effects)

 $\begin{array}{ll} gg \rightarrow H \rightarrow \bar{\gamma}\gamma & \text{vs} \quad VV \rightarrow H \rightarrow \bar{\gamma}\gamma \\ & \quad \text{(γj-bckgr modelling critical !)} \end{array}$

$\mathrm{BR}_{\gamma\bar{\gamma}}$ (%)	L = 10	$0\mathrm{fb}^{-1}$	L=300	$0\mathrm{fb}^{-1}$	L=3	ab^{-1}
Significance	2σ	5σ	2σ	5σ	2σ	5σ
${ m BR}_{\gamma ar{\gamma}}({ m VBF})$	0.76	1.9	0.43	1.1	0.14	0.34
$\mathrm{BR}_{\gamma \bar{\gamma}}\left(ggF ight)$	0.064	0.16	0.037	0.092	0.012	0.029

gg fusion sensitive down to BR_{DP} ~ 10⁻⁴-10⁻³ (VBF ~10 times worse ...) Biswas, Gabrielli, Heikinheimo, BM, arXiv:1603.01377 (PRD)

U. Roma Tre, 24 May 2018

new Higgs signatures @ e⁺e⁻ colliders from massless invisible dark photons

$$\bullet e^+e^- \to H \ \bar{\gamma} \to b\bar{b} \ \bar{\gamma}$$

PHiggs balanced by a massless invisible system

Biswas, Gabrielli, Heikinheimo, BM, arXiv:1503.05836 (JHEP)

 $e^+e^- \rightarrow ZH \rightarrow Z \gamma \bar{\gamma}$ Z^* (photon + E_{miss}) resonant signature eZ

Biswas, Gabrielli, Heikinheimo, BM, arXiv:1703.00402 (PRD)

S vs B at $\int S = 240 \text{ GeV & } \int L \sim 10 \text{ ab}^{-1}$

$$e^+e^- \to H\bar\gamma \to bb\bar\gamma$$

large rates, moderate bckgrs

★ signature → two b jets + (massless) missing E/p

MadGraph5_aMC@NLO (Eff.Lag. in FeynRules) + PYTHIA for showering and hadronization ; b-jets via jet-cone (R_j=1.5); E_j smearing $\rightarrow \sigma(E)/E = 30\%/\sqrt{E}$ b-tag. eff.~80% ; light-jet rejection ~ 100

main backgrounds :

 $\begin{array}{ll} ZZ \rightarrow \nu \bar{\nu} b \bar{b} & \nu \bar{\nu} q \bar{q} \\ ZH \rightarrow \nu \bar{\nu} b \bar{b} & \\ H\nu \bar{\nu} & (\text{VBF}) \end{array} \end{array} \begin{array}{l} \textbf{Basic cuts} & \left\{ \begin{array}{l} p_T^b > 20 \text{ GeV} \ , & |\eta_b| < 2.5 \\ \Delta R(bb) > 0.4 \ , & \not{E} > 40 \text{ GeV} \end{array} \right. \end{array}$

two particularly efficient observables for separating S from B

(normalized) M_{jj} distributions

(norm.) M_{miss} distrib.s before and after Pythia

Barbara Mele

U. Roma Tre, 24 May 2018

main backgrounds

* leptonic channel : resonant plus t-channel $e^+e^- \rightarrow \mu^+\mu^-\nu\bar{\nu}\gamma \quad ZZ\gamma \qquad e^+e^- \rightarrow \nu\bar{\nu}Z\gamma$ $WW\gamma$

 $Z\gamma$ plus fake missing energy

***** hadronic channel : $e^+e^- \rightarrow q\bar{q}\nu\bar{\nu}\gamma$ $e^+e^- \rightarrow q\bar{q}\gamma \rightarrow jj\gamma$ plus fake missing energy

simulation

PYTHIA for signal and MadGraph5_aMC@NLO + PYTHIA for bckgrds **ISR/FSR effects described by PYTHIA** $\Delta E/E = 16.6\% / \sqrt{E/\text{ GeV}} + 1.1\%.$ Finite detector resolutions for γ, μ, J $\Delta p/p = 0.1\% + p_T/(10^5 \text{ GeV})$ for $|\eta| < 1$ (as for ILD detector) $\Delta E/E_{\mathbf{j}} = 30\%/\sqrt{E/\mathrm{GeV}}$

Barbara Mele

Process	Basic cuts	$M_{\ell\ell}$ cut	$M_{\gamma\bar{\gamma}}$ cut	$M_{\rm miss}$ cut
$\mu^+\mu^-\gamma\bar{\gamma} (BR_{\gamma\bar{\gamma}}=0.1\%)$	65.3	54.9	49.7	47.3
$\mu^+\mu^-\nu\bar{\nu}\gamma$	5.00×10^4	5.73×10^{3}	1.09×10^{3}	15

$$\begin{array}{l} 86 \ {\rm GeV} < M_{\mu^+\mu^-} < 96 \ {\rm GeV} \\ 120 \ {\rm GeV} < M_{\gamma\bar{\gamma}} < 130 \ {\rm GeV} \\ M_{\rm miss} < 20 \ {\rm GeV} \end{array}$$

Barbara Mele

Event yield (after sequential cuts) hadronic channel

$$e^+e^- \to ZH \to q\bar{q}\gamma\bar{\gamma}$$

$$BR_{\gamma\bar{\gamma}} = 0.1\%$$

for $\int S = 240 \text{ GeV}$ $\int L \sim 10 \text{ ab}^{-1}$

Process	Basic cuts	M_{jj} cut	$M_{\gamma\bar{\gamma}}$ cut	$M_{\rm miss}$ cut	
$jj\gamma\bar{\gamma} (BR_{\gamma\bar{\gamma}}=0.1\%)$	804	669	154	110	72
$jj\gamma$	3.39×10^{7}	2.26×10^{7}	1.47×10^{5}	6.5×10^4	
$jj\nu\bar{\nu}\gamma$	3.9×10^4	3.1×10^4	5.9×10^3	2.2	

 $50 \text{ GeV} < M_{ii} < 90 \text{ GeV}$

$$120 \text{ GeV} < M_{\gamma\bar{\gamma}} < 130 \text{ GeV}$$

$$M_{\rm miss} < 20 {\rm ~GeV}$$

 $E > 59 \, \mathrm{GeV}$

Outlook

* an ee circular collider running at ZH,WW, Z with L ~ 10⁽³⁴⁻³⁶⁾ cm⁻²s⁻¹ can go beyond LHC reach in many different BSM sectors

***** it is "not just" a wonderful Higgs precision probe !

***** EWPT : order of magnitudes improvements wrt LEP

* ideal setup for discovering (very) new weakly interacting pls (additional light Higgses with reduced coupling not covered here...)

Hidden/Dark (SM-uncharged) Sectors can provide new signatures to scrutinise

***** many different studies, just mentioned a few...