EW : Z pole & W pairs

Paolo Azzurri – INFN Pisa CEPC workshop EU

Roma Tre, May 24th 2018

Outline

• Electroweak physics at the Z pole

The Z lineshape, neutrino species Decay BR : Rb and Rc Asymmetries, $sin^2\theta_{eff}$ $\alpha_{QED}(m_z^2)$

 Electroweak physics at the WW threshold and above Measurement of the W mass and width at threshold Measurement of W decay branching fractions Direct measurement of W mass and width Constraints on gauge couplings (mostly FCCee studies & projections)

the Giga/Tera Z pole precision

CEPC : 10^{9} - 10^{11} Z decays : **LEP1 x 10^{2-4} FCCee**: 4 10^{12} Z decays : **LEP1 x 10^{5}**

Radiation function calculated up to $O(\alpha^3): 10^{-5}$ precision $\rightarrow \Delta m_z \approx 100$ KeV

Continuous E_{CM} calibration (resonant depolarization)
 ✓ Z mass and width : 100-500 KeV (syst)

model (in) dependent (S-matrix) approach for γZ interference effects off shell data needed for precise independent approach (reduced th assumptions)

beam spread (~60 MeV) and beams crossing angle (~30mrad) monitored with μ + μ -

Z pole

luminosity from Bhabha events

- th uncertainty now at 10-4 level
- det position accuracy at 2μ m level altenative using photon pairs $ee \rightarrow \gamma\gamma$

$$\sigma^{th}_{bh} \sim \frac{16\pi\alpha^2}{s}\,\left(\frac{1}{\theta^2_{min}}-\frac{1}{\theta^2_{max}}\right)$$

Partial widths

FCC ee relative precisions <u>JHEP01(2014)164</u> R₁ hadronic/leptonic width : **5 10**⁻⁵ R_b Zbb partial width : **5 10**⁻⁵ Invisible width : **10**⁻³ N_v (Zy)

Z pole acceptance

- @LEP acceptance effects at 10⁻⁴ OK for cross sections at 10⁻³ level. Main effects were due to track losses, angle mis-measurements and knowledge of boundaries.
- @CEPC/FCCee exploit a statistical uncertainty at 10⁻⁵ !

Example from ALEPH, EPJC 14 (2000) 1

Table 13. Exclusive $\mu^+\mu^-$ selection: examples of relative systematic uncertainties (in %) for the 1994 (1995) peak points

Source	$\Delta\sigma/\sigma$ (%)
Acceptance	0.05
Momentum calibration	$0.006 \ (0.009)$
Momentum resolution	0.005
Photon energy	0.05
Radiative events	0.05
Muon identification	$\simeq 0.001 \ (0.02)$
Monte Carlo statistics	0.06
Total	0.10 (0.11)

@LEP detectors inner edge (**relevant boundary**) was known at the level of up to **20 μm** The beam displacement (**vertical** and **horizontal**) becomes ineffective by choosing two fiducial regions (**loose and tight**) and **alternating them** in the two sides

@CEPC/FCCee can **use similar methods for cross sections** measurements (e.g. different and alternating forward and backward fiducial regions), <u>but still need to identify and</u> <u>know well the relevant boundaries</u> (~1µm level)

couplings and R_b

couplings measurements require asymmetry and width ratios

$$A_{FB}(b) = \frac{\sigma_F - \sigma_B}{\sigma_{tot}} = \frac{3}{4} A_e A_b \text{ (LEP)} \longrightarrow \frac{g_{Vf}}{g_{Af}}$$

$$R_b = \frac{\Gamma(Z \rightarrow b\overline{b})}{\Gamma_{had}} \qquad A_b = A_{FB}^{pol}(b) = 0.921 \pm 0.021 \text{ (SLC)}$$

$$R_b = 0.21646 \pm 0.00065 \text{ (LEP + SLC)} \longrightarrow (g_{Af})^2 + (g_{Vf})^2$$

- R_b Very sensitive to rad. vertex corrections due to new particles
- Important to sort out LEP b-couplings issue
- Measurement exploits the presence of two b hadrons and b-tagging.
- Independent from b-tagging efficiency, but not from hemisphere correlations
- Higher b-tagging performance (vertex detectors) helps in reducing the correlation
- Correlations sources should be identified and studied with data (done at LEP)

 $\Delta R_b \approx 5$ (30) 10⁻⁵ stat (syst) $\Delta R_c \approx 15$ (150) 10⁻⁵ stat (syst)

Z asymmetries

• Z boson decay to ff : 3 observables from the direction and decay of the outgoing fermion

$$A_{FB} = \frac{2g_{Vf}g_{Af}}{(g_{Vf})^{2} + (g_{Af})^{2}}$$

$$A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{tot}} = \frac{3}{4}A_{e}A_{f} \quad \text{Can measure for } e,\mu,\tau,c,b$$

$$A_{FB} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -A_{f}$$

$$Can measure with \tau' s$$

$$A_{pol}^{FB} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -\frac{3}{4}A_{e}$$

• Additional asymmetries with polarization of initial state :

$$A_{LR} = \frac{\sigma_{l} - \sigma_{r}}{\sigma_{tot}} = A_{e}$$
$$A_{FB}^{\text{pol}} = \frac{\sigma_{F,l} - \sigma_{B,l} - \sigma_{F,r} + \sigma_{B,r}}{\sigma_{tot}} = \frac{3}{4}A_{f}$$

Z asymmetries

FCCee projections

$$→ Δ_{rel} sin^2 θ_{eff} ≈ 2 10^{-5} (syst) → x100 improvement wrt LEP !$$

CEPC Roma - 24/05/18

P. Azzurri - EW : Z & WW

Z pole

Paramete	er Dominating source	expected uncertainty	improvement w.r.t. LEP
m_Z	beam energy	100 keV	20
Γ_Z	beam energy	100 keV	20
σ^0_{had}	luminosity	$5 imes 10^{-3} \ { m nb}$	20
R_{ℓ}	exp. acceptance	5×10^{-5}	8
	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
$R_{\mu}\left(R_{\ell}\right)$	Statistical uncertainty 10^{-6}	Systematic uncertainty 5×10^{-5}	improvement w.r.t. LEP 20
$\frac{R_{\mu}\left(R_{\ell}\right)}{R_{\tau}}$	$\begin{array}{c} \text{Statistical uncertainty}\\ 10^{-6}\\ 1.5\times10^{-6} \end{array}$	$\begin{array}{c} \text{Systematic uncertainty} \\ 5\times10^{-5} \\ 10^{-4} \end{array}$	improvement w.r.t. LEP 20 20
$\begin{array}{c} R_{\mu} \left(R_{\ell} \right) \\ R_{\tau} \\ R_{\rm e} \end{array}$	$\begin{array}{c} \text{Statistical uncertainty}\\ 10^{-6}\\ 1.5\times10^{-6}\\ 1.5\times10^{-6} \end{array}$	$\begin{array}{c} \text{Systematic uncertainty}\\ 5\times10^{-5}\\ 10^{-4}\\ 3\times10^{-4} \end{array}$	improvement w.r.t. LEP 20 20 20 20
$\begin{array}{c} R_{\mu}\left(R_{\ell}\right)\\ R_{\tau}\\ R_{\rm e}\\ R_{\rm b} \end{array}$	$\begin{array}{c} \text{Statistical uncertainty} \\ 10^{-6} \\ 1.5 \times 10^{-6} \\ 1.5 \times 10^{-6} \\ 5 \times 10^{-5} \end{array}$	$\begin{array}{c} \text{Systematic uncertainty} \\ 5 \times 10^{-5} \\ 10^{-4} \\ 3 \times 10^{-4} \\ 3 \times 10^{-4} \end{array}$	improvement w.r.t. LEP 20 20 20 10

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
\mathcal{A}_{e}	$5. \times 10^{-5}$	$1. \times 10^{-4}$	50
\mathcal{A}_{μ}	2.5×10^{-5}	1.5×10^{-4}	30
\mathcal{A}_{τ}	$4. \times 10^{-5}$	$3. \times 10^{-4}$	15
\mathcal{A}_b	2×10^{-4}	30×10^{-4}	5
\mathcal{A}_{c}	3×10^{-4}	80×10^{-4}	4
$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$	100
$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	6.6×10^{-6}	75

FCCee

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z lineshape	$> 150 {\rm ~fb}^{-1}$
m_W	33 MeV	3 MeV	ZH (WW) thresholds	$> 100 {\rm ~fb}^{-1}$
A^b_{FB}	1.7%	0.15%	Z pole	$> 150 {\rm ~fb^{-1}}$
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole	$>150~{ m fb}^{-1}$
R_b	0.3%	0.08%	Z pole	$> 100 {\rm ~fb}^{-1}$
N_{ν} (direct)	1.7%	0.2%	ZH threshold	$>100~{\rm fb}^{-1}$
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	$>150~{ m fb}^{-1}$
R_{μ}	0.2%	0.05%	Z pole	$> 100 {\rm ~fb^{-1}}$
$R_{ au}$	0.2%	0.05%	Z pole	$> 100 {\rm ~fb}^{-1}$

Rely of a self-normalizing quantity, the forward-backward asymmetry

Optimal centre-of-mass energies for a 3×10^{-5} uncertainty on α_{QED} : $vs_{-} = 87.9 \text{ GeV}$ and $vs_{+} = 94.3 \text{ GeV}$

10⁻⁵

60

70

80

 α_{OED} accuracy from $A_{--}^{\mu\mu}$ at FCC-ee

100

110

120

130

140 √s (GeV) 150

90

Determination of $\alpha_{\rm QED} (m_{\rm Z}^2)$

Two measurements :

Solve for $\alpha_0 = \alpha_{QED} (m_Z^2)$

$$\frac{1}{\alpha_0} = \frac{1}{\alpha_\pm} + \beta \log \frac{s_\pm}{m_z}$$

$$8\frac{\Delta A_{\rm FB}}{A_{\rm FB}}(s_{-}) + 0.563\frac{\Delta A_{\rm FB}}{A_{\rm FB}}(s_{+})$$

Type	Source	Uncertainty
	E_{beam} calibration	1×10^{-5}
	$E_{\rm beam}$ spread	$< 10^{-7}$
Experimental	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
	$m_{\rm Z}$ and $\Gamma_{\rm Z}$	1×10^{-6}
Parametric	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
	QED (ISR, FSR, IFI)	$< 10^{-6}$
Theoretical	Missing EW higher orders	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}
(except missing EW higher orders)	Statistics	3×10^{-5}

IFI at better than 1% to reach the required precision on $\alpha_{QED}(m_Z^2)$:

work in progress

 $\alpha_{-} \equiv \alpha_{\text{QED}}(s_{-}) \text{ and } \alpha_{+} \equiv \alpha_{\text{QED}}(s_{+})$

Box + Vertex EW correction

CEPC Roma - 24/05/18

Rely of a self-normalizing quantity, the forward-backward asymmetry

$$A_{\rm FB}^{\mu\mu} = A_{\rm FB,0}^{\mu\mu} + \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}}{\mathcal{G} + \mathcal{Z}}. \quad \sigma \left(A_{\rm FB}^{\mu\mu}\right) = \sqrt{\frac{1 - A_{\rm FB}^{\mu\mu^2}}{\mathcal{L}\sigma_{\mu\mu}}}. \quad \frac{\Delta\alpha}{\alpha} = \frac{\Delta\alpha}{A_{\rm FB}^{\mu\mu}}.$$

 $\sigma(\alpha)/\alpha$ plot, for a year of running at any Vs

Optimal centre-of-mass energies for a 3×10^{-5} uncertainty on α_{QED} : $\sqrt{s_{-}} = 87.9 \text{ GeV}$ and $\sqrt{s_{+}} = 94.3 \text{ GeV}$

$$\frac{\Delta \alpha}{\alpha} = \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu} - A_{\rm FB,0}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}} \simeq \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}},$$

Determination of $\alpha_{\rm QED} (m_{\rm Z}^2)$

Two measurements :

Solve for $\alpha_0 = \alpha_{QED} (m_Z^2)$

$$\frac{1}{\alpha_0} = \frac{1}{\alpha_\pm} + \beta \log \frac{s_\pm}{m}$$

$$\frac{\Delta \alpha_0}{\alpha_0} \simeq 0.528 \frac{\Delta A_{\rm FB}}{A_{\rm FB}}(s_-) + 0.563 \frac{\Delta A_{\rm FB}}{A_{\rm FB}}(s_+)$$

Type	Source	Uncertainty
	$E_{\rm beam}$ calibration	1×10^{-5}
	$E_{\rm beam}$ spread	$< 10^{-7}$
Experimental	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
	$m_{\rm Z}$ and $\Gamma_{\rm Z}$	1×10^{-6}
Parametric	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
	QED (ISR, FSR, IFI)	$< 10^{-6}$
Theoretical	Missing EW higher orders	few 10 ⁻⁴
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}
(except missing EW higher orders)	Statistics	3×10^{-5}

IFI at better than 1% to reach the required precision on $\alpha_{QED}(m_Z^2)$:

work in progress

 $\alpha_{-} \equiv \alpha_{\text{QED}}(s_{-}) \text{ and } \alpha_{+} \equiv \alpha_{\text{QED}}(s_{+})$

Box + Vertex EW correction

CEPC Roma - 24/05/18

Z pole : effects on EW fit

Z pole detector requirements

The performance of a modern, general-purpose, e+e– detector are adequate for precision physics at the Z pole with FCCee/CEPC

acceptance effects, related to the knowledge of large-detector boundaries and of tracking efficiency should be given special attention

the mechanical stability of (luminosity) detectors should be improved, requiring an accuracy in detector position at the $\approx 2 \ \mu m \ level$

efficient detection of **photons** and excellent measurement of their **energy** is important, for tau polarization couplings and radiative events.

identification of **secondary vertexes** from B and C hadron decays is very relevant for HF quark couplings. A performance similar and better than modern LHC detectors should be the target (a factor 3 better than LEP detectors).

WW threshold

$$\Delta m_W = \left(\frac{d\sigma}{dm_W}\right)^{-1} \Delta \sigma$$

m_W from σ_{WW} : sensitivity vs E_{CM}

 σ_{WW} with YFSWW3 <u>1.18</u>

Vep with fixed : ϵ =0.75 and $\sigma_{\rm B}$ =0.3pb

statistical precision with L= 8/ab $\rightarrow \Delta m_w \approx 0.35$ MeV

need syst control on :

- ΔE(beam)<0.35 MeV (**4x10**-6)
- Δε/ε, ΔL/L < 2 10⁻⁴

Γ_{W} from σ_{WW}

Measure σ ww in two energy points E_1 , E_2 with a fraction f of lumi in E_1 \rightarrow determine both $m_w \& \Gamma_w$

Determine f, E_1 , E_2 such to mimimise ($\Delta\Gamma_W$, Δm_W) with some target

Evaluate loss of Δm_W precision in the single parameter (m_W) determination wrt scenario of running only at an optimal E₀=161 point

$m_W \& \Gamma_W \text{ from } \sigma_{WW}$

W decay BR

Winter 2005 - LEP Preliminary

Winter 2005 - LEP Preliminary

Lept universality test at 2% level tau BR ~2.7 σ larger than e/mu \rightarrow FCCee @ 4 10⁻⁴ level

will need excellent control of **lepton id** i.e. cross contaminations in signal channels ($\tau \rightarrow e,\mu$ in the e,μ channels and v.v.)

Flavor tagging would also allow to measure coupling to c & b-quarks (Vcs, Vcb,..)

Direct m_w reconstruction

Studies in the four-jet channel

PYTHIA + CLD simulation Jet clustering with Durham algorithm events constrained to form four jets di-jet pairing : closest to the nominal m_w

Three W mass estimators

- Raw dijet mass
- 4C kinematic jets momenta Rescaling
- Kinematic Fit : minimising jets $\chi 2$

(Marina Béguin)

The expected statistical uncertainty on the W mass peak value (Δm_W ,stat) is estimated with a **binned max likelihood fit** on the reconstructed m_W distributions, **using templates** with different nominal W mass values. The final expected uncertainty is the result of the combination of the measurements of the two reconstructed masses.

Direct m_w reconstruction

at the W-pair threshold

Smaller dijet mass tends to be off-shell Larger dijet mass is on-shell combined **statistical** uncertainties ΔM_W (4C fit) = 1.02 MeV ΔM_W (4C rescaling) = 1.18 MeV ΔM_W (raw mass) = 1.55 MeV

Direct m_w reconstruction

Optional possibility of using **cone** constraints on jets: the mass resolution is degraded ~20% because of the particle information loss.

This loss is expected to be compensated by a decrease of the FSI systematic uncertainty.

Coming soon:

- 5C kinematic fit with equality of the two dijet masses
- Study of the semi-leptonic WW decay channel

Direct m_w: systematics ?

5/ab@240GeV → Δm_w (stat)= 0.5 MeV $M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$

Is ΔE_{beam} ~1MeV at E_{CM} =240-365 GeV possible ? With radiative Z-returns (Zy) events ? Maybe !

Table 9: Summary of the systematic errors on m_W and Γ_W in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled $\ell\nu q\bar{q}$ lists the uncertainties in m_W used in combining the semileptonic channels.

 θ , β : jet polar angles and velocities in the CM frame

	$\Delta m_{ m W}~({ m MeV}/c^2)$			$\Delta \Gamma_{\rm W} ~({ m MeV})$				
Source	$e\nu q\bar{q}$	μu q $ar{q}$	au u q ar q	$\ell \nu q \bar{q}$	$e\nu q \bar{q}$	μu q $ar{ ext{q}}$	$ au u$ q $ar{q}$	$\ell \nu q \bar{q}$
$e+\mu$ momentum	3	8	-	4	5	4	-	4
$e+\mu$ momentum resoln	7	4	-	4	65	55	-	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	-	-	4	20	-	-	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

lepton and jet uncertainties from (Z) calibration data

Detector PF capabilities

Triple gauge couplings

Triple gauge couplings

A large benchmark value (0.5) is shown to make the effects of the aTGCs visible. Since the precision reach of the aTGCs are at $O(10^{-3})$ or better, a linear approximation works very well for this analysis.

Triple gauge couplings

A binned chi-square fit is performed to estimate the precision reach of the three aTGCs at the FCCee.

Only the semileptonic channel, with one W decaying to e or μ is used. The chi-square is summed over all bins of the five angles, considering only statistical uncertainties of signal events. The ambiguities in the reconstructions of the hadronic W decay angles (which are "folded") are taken into account.

LEP2 precision : 2-4 10⁻²

current LHC limits A/vc<100-400 GeV

WW acceptance

how do we control acceptance at the 10⁻⁴ level (0.01%) ?
→ aim for the highest possible acceptance and efficiency WP

- lepton tracking reco efficiency (was controlled at the 10⁻³ level at LEP2)
- lepton identification performances
 - @LEP2 10⁻³ level: (T&P with Z): effects on total $\Delta \sigma$ mitigated down to the 2-3 10⁻⁴ level thanks to $\tau \rightarrow e, u$ channel migrations recoveries
 - would need lepton-id at 10⁻⁴ level for max BR precision
- jet reconstruction and energy calibration
 - @LEP2 1-2% level → 0.1% on Δε:
 - FCCee would need calibration at 0.1% level (10x better) with control data ; best possible jet energy resolution helps
- **missing momentum** scale/resolution : similar to jet energy for qqlv
- lepton isolation
 - @LEP2 control at the $\Delta \epsilon^2 10^{-3}$ level: need to do 10x better
- jet modeling (signal & bkg)
 - was important syst on σ_{WW} @LEP2 (at the 2 10⁻³ level)

impact of theoretical uncertainties will hopefully not be limiting but work is needed to reach the target 0.2 10⁻³ precision level

WW background control

2-fermion : $\tau\tau$, qq 4-fermion : $\gamma\gamma \rightarrow \tau\tau$, ll $\nu\nu$, Zee, Wev

some 4f bkg is identical to the signal final state → CC03-4f interferences

measure directly the **backgrounds** with very different S/B levels **at different E_{см} points**

efficiency bkg decay purity [LEP1996] **50fb** $(\tau\tau,\gamma\gamma \rightarrow \tau\tau, Z\gamma^* \rightarrow \nu\nu II)$ |v|v70-80% 80-90% **30fb** (qq, Zee, Zγ^{*}) **-10fb** (Wev) 85% ~90% evqq 90% ~95% **10fb** (Ζγ^{*},qq) μναα 50% 80-85% **50fb** (qq, Zγ^{*}) τνqq 90% ~90% ~**200fb** (qq (qqqq,qqgg)) qqqq

concern is mostly on the four-jet background

measure forward electrons (\theta \ge 0.1 \text{ rad}) for Zee Wev : determine forward pole $d\sigma/d\theta$ and WW interference effects

acceptance down to **θ=0.1** [cosθ= 0.995] would also cover forward jets

limiting **correlated** systs can cancel out taking data at more E_{CM} points where

$$\left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dm_W}\right)^{-1} \sigma \left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \sigma$$

differential factors are equal

Conclusions

- CEPC/FCCee will be a total game-changer for EW W/Z physics measurements
- No "a priori" walls on the road map to achieve the FCC goals for EW precision measurements but a lot of work, firstly on the theoretical calculations side
- At the Z, off peak data will play an important role (more than at LEP times)
 - can deliver $a_{QED}(m_Z^2)$ to 3×10^{-5}
- The WW threshold lineshape is a great opportunity to measure both m_w and Γ_w :
 - optimal points to take data are $\sqrt{s}=2m_w+1.5$ GeV (*F***-insensitive**) and $\sqrt{s}=2mw-2-3$ GeV (-*F***off shell**)
- Huge potential for other W physics measurements including higher energy data :
 - direct m_w , W BRs, TGCs
- Work from experimentalist needed to evaluate with care limiting systematics, study ways to overcome them, and reflect on the detector design consequences: opportunities to contribute