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the	Giga/Tera	Z	pole	precision	
CEPC	:	109-1011	Z	decays			:		LEP1	x	102-4		
FCCee:	4	1012	Z	decays			:		LEP1	x	105	

conVnuous	ECM	calibraVon	(resonant	depolarizaVon)	
è	Z	mass	and	width	:	100-500	KeV	(syst)		

RadiaVon	funcVon	calculated	up	to	
O(α3)	:	10-5	precision	à	ΔmZ≈100	KeV	

model	(in)	dependent	(S-matrix)	approach	for		γZ	interference	effects		
off	shell	data	needed	for	precise	independent	approach	(reduced	th	assumpVons)		

beam	spread	(~60	MeV)	and	beams	crossing	angle	(~30mrad)			monitored	with	μ+μ-		
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Z	pole	
luminosity	from	Bhabha	events	
•  th	uncertainty	now	at	10-4	level	
•  det	posiVon	accuracy	at	2μm	level	
altenaVve	using	photon	pairs		eeàγγ	

ParVal	widths	

FCC	ee	rela9ve	precisions	JHEP01(2014)164	
Rl	hadronic/leptonic	width	:	5	10-5	
Rb	Zbb	parVal	width	:	5	10-5	
Invisible	width	:	10-3	Nν	(Zγ)	
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Z	pole	acceptance	
•  @LEP	acceptance	effects	at	10-4	

OK	for	cross	secVons	at		10-3	level.	
Main	effects	were	due	to	track	
losses,	angle	mis-measurements		
and	knowledge	of	boundaries.	

•  @CEPC/FCCee		exploit	a	staVsVcal	
uncertainty	at	10-5		!	

	
Example	from	ALEPH,	EPJC	14	(2000)	1	

@LEP	detectors	inner	edge	(relevant	boundary)	was	known	at	the	level	of	up	to		20	μm	
The	beam	displacement	(ver9cal	and	horizontal)	becomes	ineffecVve	by	choosing	two	
fiducial	regions	(loose	and	9ght)	and	alterna9ng	them	in	the	two	sides		
	
@CEPC/FCCee	can	use	similar	methods	for	cross	sec9ons	measurements	(e.g.	different	
and	alternaVng	forward	and	backward	fiducial	regions),	but	sVll	need	to	idenVfy	and	
know	well	the	relevant	boundaries	(~1μm	level)	
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couplings	and	Rb	

•  Rb	Very	sensiVve	to	rad.	vertex	correcVons	due	to	new	parVcles		
•  Important	to	sort	out	LEP	b-couplings	issue	
•  Measurement	exploits	the	presence	of	two	b	hadrons	and	b-tagging.	
•  Independent	from	b-tagging	efficiency,	but	not	from	hemisphere	correla9ons	
•  Higher	b-tagging	performance	(vertex	detectors)	helps	in	reducing	the	correlaVon	
•  CorrelaVons	sources	should	be	idenVfied	and	studied	with	data		(done	at	LEP)		

couplings	measurements	require	asymmetry	and	width	raVos		
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ΔRb	≈5	(30)	10-5			stat	(syst)	 ΔRc	≈15	(150)	10-5			stat	(syst)	



Z	asymmetries	
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•  Z	boson	decay	to	ff	:	3	observables	from	the	direcVon	and	decay	of	
the	outgoing	fermion	
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Z	asymmetries		
CEPC/FCCee	can	sizably	improve	b	asymmetry	

• 	use	semileptonic	b	decays	
• 	use	weighted	charge	of	parVcles	in	the	hemisphere	

• different	systemaVc	effects	[QCD	correcVons	to	be	improved]			
è	ΔAb	≈2	(30)	10-4			stat	(syst)			ΔAc	≈3	(80)	10-4			stat	(syst)		
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tau	polariza9on	A	
PolarizaVon	vs	the	producVon	angle	
allows	Ae	to	be	separated	from	Aτ :	
Universality	test	and	sin2θW	

AFB(µ+µ-)	and	AFB(τ+τ-)	can	also	be	considerably	improved.	
AFB(e+e-)	more	difficult	because	of	t-channel.	

è ΔAτ	≈4	(30)	10-5			stat	(syst)				
è ΔAe,μ	≈5	(10)	10-5			stat	(syst)	

è	∆rel	sin2θeff	≈	2	10-5	(syst)				è	x100	improvement	wrt	LEP	!	FCCee	projec9ons	



Z	pole	

FCCee	
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Direct	measurement		of	αQED(mZ
2)	
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Patrick	Janot:					arXiv:1512:05544,		JHEP	2016(2)	1	
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High	precision	of	FCCee	will	require	higher	order	perturbaVve	
calculaVons	:	a	boYleneck	will	be	represented	by	the	
hadronic	contribuVons	to	the	vacuum	polarizaVon		
	
Rely	of	a	self-normalizing	quanVty,	the	forward-backward	asymmetry	
	

σ(α)/α plot,	for	a	year	of	running	at	any	√s	
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where the approximation in the last term of the equality is valid off the Z peak.

3 Statistical power of the method

The optimal centre-of-mass energies are those which minimize the statistical uncertainty on
↵QED(s). For a given integrated luminosity L, the statistical uncertainty on the forward-
backward asymmetry amounts to
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The target luminosities for the FCC-ee in a configuration with four interaction points are
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34
cm

�2
s

�1 per interaction
point at the WW pair production threshold [12]. With 10

7 effective seconds per year,
the total integrated luminosity is therefore expected to be 86 ab

�1/ year at the Z pole
and 15.2 ab

�1/ year at the WW threshold. Between these two points, the variation of
the luminosity with the centre-of-mass energy is assumed to follow a simple power law:
L(ps) = L(mZ) ⇥ sa. The very large Z pole luminosity is achieved by colliding about
60,000 bunches of electrons and positrons, which fill the entirety of the 400 MHz RF buckets
available over 100 km. It also corresponds to a time between two bunch crossings of 5 ns,
which is close to the minimum value acceptable today for the experiments. With a constant
number of bunches, the luminosity was therefore conservatively assumed to linearly decrease
with the centre-of-mass energy (and reach 0. for

p
s = 0.), leading to the profile of Fig. 5.

With the cross section of Fig. 2, the asymmetry of Fig. 3, and the integrated luminosity
of Fig. 5, Eq. 3.1 leads to the statistical uncertainty on Aµµ

FB displayed as the blue area in
Fig. 4, for a one-year running at any given centre-of-mass energy. An improvement on the
determination of ↵QED(s) is possible wherever the red curve lies outside the blue area, and
is largest when the absolute value of the ratio between the red and blue curves is maximum.

The corresponding relative accuracy for the ↵QED(s) determination is shown in Fig. 6.
The best accuracy of ⇠ 3 ⇥ 10

�5 is obtained for one year of running either just below or
just above the Z pole, specifically at p
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s+ ⇠ 94.3GeV.

The value of the electromagnetic coupling constant extracted from the muon forward-
backward asymmetry measured at either energy, ↵� ⌘ ↵QED(s�) and ↵+ ⌘ ↵QED(s+), are
then extrapolated towards a determination of ↵0 ⌘ ↵QED(m
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where � is proportional to the well-known QED �-function. In the standard model and at
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The variation of Aµµ
FB as a function of the centre-of-mass energy, as obtained from

Eq. 2.10, is shown in Fig. 3. In the above expressions, the photon-exchange term is totally
symmetric, hence is absent from the numerator. Because v4/a4 ' 3⇥10

�5, the Z-exchange
term contribution to the asymmetry is minute, except at the Z pole where the interference
term vanishes and the asymmetry is small: Aµµ

FB,0 = (3/4) ⇥ 4v2a2/(a2 + v2)2 ' 0.016.
The interference term, on the other hand, is almost 100% anti-symmetric and contributes
mostly to the numerator. (The contribution of the interference term to the denominator,
i.e., to the total cross section, can be neglected as shown in Fig. 2.)
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Figure 3. The muon forward-backward asymmetry in e

+
e

� ! µ+µ� as a function of the centre-
of-mass energy.
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In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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OpVmal	centre-of-mass	energies	for	a	3×10-5	
uncertainty	on	αQED	:	
	√s-	=	87.9	GeV	and	√s+	=	94.3	GeV	
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DeterminaVon	of	αQED(mZ
2)	
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than the accuracy of the (average) beam energy measurement. The relative centre-of-mass
energy spread � is

p
2 times smaller, i.e., of the order of 0.08%. The shift �Aµµ

FB between the
predicted asymmetry and its measured value at a centre-of-mass energy p

s± is therefore
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i.e., numerically
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�5
and

�AFB
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(s+) = +3.1⇥ 10

�5, (4.8)

under the reasonable assumption that the beam energy spread values are similar at p
s±

and mZ.
The relative changes of AFB(s±) are of the order of the statistical uncertainty, and

larger than the uncertainty originating from the beam energy measurement. These changes
are, however, of opposite sign, and lead to a remarkable cancellation by more than one order
of magnitude in the determination of ↵0. Indeed, the combination of Eqs. 2.13 and 3.3 leads
to the following estimate of the bias on ↵0:

�↵0

↵0
' 0.528

�AFB

AFB
(s�) + 0.563

�AFB

AFB
(s+) ' +1.6⇥ 10

�6. (4.9)

The uncertainty on this small bias (which is to be corrected for) depends on the accuracy
with which the beam energy spread in known. For example, the measurement of bunch
length from the distribution of the µ+µ� event primary vertices determined directly by
the FCC-ee experiments would allow a precise determination of the beam energy spread.
A precision of 2.5% could be reached with this method at LEP [18], yielding a negligible
uncertainty on the ↵QED(m

2
Z) determination.

4.1.3 Muon identification efficiency and detector acceptance

In Eq. 2.10, the asymmetry is determined under the assumption of a 100% muon identi-
fication efficiency and a 4⇡ detector acceptance. This equation is still valid for a smaller
efficiency, with the condition that it is independent of the muon polar angle. If instead the
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than the accuracy of the (average) beam energy measurement. The relative centre-of-mass
energy spread � is

p
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s±

and mZ.
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Two	measurements	:		

Solve	for	α0	=	αQED(mZ
2)	

5 Conclusions and outlook

In this paper, it has been shown that the measurement of the muon forward-backward
asymmetry at the FCC-ee, with six months of data taking just below (

p
s = 87.9GeV) and

just above (
p
s = 94.3GeV) the Z peak, as part of the Z resonance scan, would open the

opportunity of a direct measurement of the electromagnetic constant ↵QED(m
2
Z), with a

relative statistical uncertainty of the order of 3⇥ 10

�5.
A comprehensive list of sources for experimental, parametric, theoretical systematic

uncertainties has been examined. Most of these uncertainties have been shown to be under
control at the level of 10

�5 or below, as summarized in Table 1. A significant fraction
of those benefits from a delicate cancellation between the two asymmetry measurements.
The knowledge of the beam energy, both on- and off-peak, turns out to be the dominant
contribution, albeit still well below the targeted statistical power of the method.

Type Source Uncertainty
Ebeam calibration 1⇥ 10

�5

Ebeam spread < 10

�7

Experimental Acceptance and efficiency negl.
Charge inversion negl.
Backgrounds negl.
mZ and �Z 1⇥ 10

�6

Parametric sin

2 ✓W 5⇥ 10

�6

GF 5⇥ 10

�7

QED (ISR, FSR, IFI) < 10

�6

Theoretical Missing EW higher orders few 10

�4

New physics in the running 0.0

Total Systematics 1.2⇥ 10

�5

(except missing EW higher orders) Statistics 3⇥ 10

�5

Table 1. Summary of relative statistical, experimental, parametric and theoretical uncertainties to
the direct determination of the electromagnetic coupling constant at the FCC-ee, with a one-year
running period equally shared between centre-of-mass energies of 87.9 and 94.3GeV, corresponding
to an integrated luminosity of 85 ab�1.

The fantastic integrated luminosity and the unique beam-energy determination are the
key breakthrough advantages of the FCC-ee in the perspective of a precise determination of
the electromagnetic coupling constant. Today, the only obstacle towards this measurement
– beside the construction of the collider and the delivery of the target luminosities – stems
from the lack of higher orders in the determination of the electroweak corrections to the
forward-backward asymmetry prediction in the standard model. With the full one-loop
calculation presently available for these corrections, a relative uncertainty on Aµµ

FB of the
order of a few 10

�4 is estimated. An improvement deemed adequate to match the FCC-ee
experimental precision might require a calculation beyond two loops, which may be beyond
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where the approximation in the last term of the equality is valid off the Z peak.

3 Statistical power of the method

The optimal centre-of-mass energies are those which minimize the statistical uncertainty on
↵QED(s). For a given integrated luminosity L, the statistical uncertainty on the forward-
backward asymmetry amounts to

�
�
Aµµ

FB

�
=

s
1�Aµµ

FB
2

L�µµ . (3.1)

The target luminosities for the FCC-ee in a configuration with four interaction points are
215⇥10

34
cm

�2
s

�1 per interaction point at the Z pole and 38⇥10

34
cm

�2
s

�1 per interaction
point at the WW pair production threshold [12]. With 10

7 effective seconds per year,
the total integrated luminosity is therefore expected to be 86 ab

�1/ year at the Z pole
and 15.2 ab

�1/ year at the WW threshold. Between these two points, the variation of
the luminosity with the centre-of-mass energy is assumed to follow a simple power law:
L(ps) = L(mZ) ⇥ sa. The very large Z pole luminosity is achieved by colliding about
60,000 bunches of electrons and positrons, which fill the entirety of the 400 MHz RF buckets
available over 100 km. It also corresponds to a time between two bunch crossings of 5 ns,
which is close to the minimum value acceptable today for the experiments. With a constant
number of bunches, the luminosity was therefore conservatively assumed to linearly decrease
with the centre-of-mass energy (and reach 0. for

p
s = 0.), leading to the profile of Fig. 5.

With the cross section of Fig. 2, the asymmetry of Fig. 3, and the integrated luminosity
of Fig. 5, Eq. 3.1 leads to the statistical uncertainty on Aµµ

FB displayed as the blue area in
Fig. 4, for a one-year running at any given centre-of-mass energy. An improvement on the
determination of ↵QED(s) is possible wherever the red curve lies outside the blue area, and
is largest when the absolute value of the ratio between the red and blue curves is maximum.

The corresponding relative accuracy for the ↵QED(s) determination is shown in Fig. 6.
The best accuracy of ⇠ 3 ⇥ 10

�5 is obtained for one year of running either just below or
just above the Z pole, specifically at p

s� ⇠ 87.9GeV and p
s+ ⇠ 94.3GeV.

The value of the electromagnetic coupling constant extracted from the muon forward-
backward asymmetry measured at either energy, ↵� ⌘ ↵QED(s�) and ↵+ ⌘ ↵QED(s+), are
then extrapolated towards a determination of ↵0 ⌘ ↵QED(m

2
Z) with the running coupling

constant expression around the Z pole, valid at all orders in the leading-log approximation:

1

↵0
=

1

↵±
+ � log

s±
m2

Z

, (3.2)

where � is proportional to the well-known QED �-function. In the standard model and at
the lowest QED/QCD order, it reads �0 =

P
f Q

2
f /3⇡, where the sum runs over all active

fermions at the Z pole (f = e, µ, ⌧ , d, u, s, c b) and Qf is the fermion electric charge in
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The variation of Aµµ
FB as a function of the centre-of-mass energy, as obtained from

Eq. 2.10, is shown in Fig. 3. In the above expressions, the photon-exchange term is totally
symmetric, hence is absent from the numerator. Because v4/a4 ' 3⇥10

�5, the Z-exchange
term contribution to the asymmetry is minute, except at the Z pole where the interference
term vanishes and the asymmetry is small: Aµµ

FB,0 = (3/4) ⇥ 4v2a2/(a2 + v2)2 ' 0.016.
The interference term, on the other hand, is almost 100% anti-symmetric and contributes
mostly to the numerator. (The contribution of the interference term to the denominator,
i.e., to the total cross section, can be neglected as shown in Fig. 2.)
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Figure 3. The muon forward-backward asymmetry in e

+
e

� ! µ+µ� as a function of the centre-
of-mass energy.

The off-peak muon forward-backward asymmetry can therefore be expressed as follows:

Aµµ
FB = Aµµ

FB,0 +
3

4

a2

v2

I
G + Z . (2.11)

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates to

a variation �Aµµ
FB of the muon forward-backward asymmetry:

�Aµµ
FB =

�↵

↵
⇥ 3

4

a2

v2

I(Z � G)
(G + Z)

2
=

⇣
Aµµ

FB �Aµµ
FB,0

⌘
⇥ Z � G

Z + G ⇥ �↵

↵
. (2.12)

In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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than the accuracy of the (average) beam energy measurement. The relative centre-of-mass
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The uncertainty on this small bias (which is to be corrected for) depends on the accuracy
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length from the distribution of the µ+µ� event primary vertices determined directly by
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+	

Two	measurements	:		

Solve	for	α0	=	αQED(mZ
2)	

5 Conclusions and outlook

In this paper, it has been shown that the measurement of the muon forward-backward
asymmetry at the FCC-ee, with six months of data taking just below (

p
s = 87.9GeV) and

just above (
p
s = 94.3GeV) the Z peak, as part of the Z resonance scan, would open the

opportunity of a direct measurement of the electromagnetic constant ↵QED(m
2
Z), with a

relative statistical uncertainty of the order of 3⇥ 10

�5.
A comprehensive list of sources for experimental, parametric, theoretical systematic

uncertainties has been examined. Most of these uncertainties have been shown to be under
control at the level of 10

�5 or below, as summarized in Table 1. A significant fraction
of those benefits from a delicate cancellation between the two asymmetry measurements.
The knowledge of the beam energy, both on- and off-peak, turns out to be the dominant
contribution, albeit still well below the targeted statistical power of the method.

Type Source Uncertainty
Ebeam calibration 1⇥ 10

�5

Ebeam spread < 10

�7

Experimental Acceptance and efficiency negl.
Charge inversion negl.
Backgrounds negl.
mZ and �Z 1⇥ 10

�6

Parametric sin

2 ✓W 5⇥ 10

�6

GF 5⇥ 10

�7

QED (ISR, FSR, IFI) < 10

�6

Theoretical Missing EW higher orders few 10

�4

New physics in the running 0.0

Total Systematics 1.2⇥ 10

�5

(except missing EW higher orders) Statistics 3⇥ 10

�5

Table 1. Summary of relative statistical, experimental, parametric and theoretical uncertainties to
the direct determination of the electromagnetic coupling constant at the FCC-ee, with a one-year
running period equally shared between centre-of-mass energies of 87.9 and 94.3GeV, corresponding
to an integrated luminosity of 85 ab�1.

The fantastic integrated luminosity and the unique beam-energy determination are the
key breakthrough advantages of the FCC-ee in the perspective of a precise determination of
the electromagnetic coupling constant. Today, the only obstacle towards this measurement
– beside the construction of the collider and the delivery of the target luminosities – stems
from the lack of higher orders in the determination of the electroweak corrections to the
forward-backward asymmetry prediction in the standard model. With the full one-loop
calculation presently available for these corrections, a relative uncertainty on Aµµ

FB of the
order of a few 10

�4 is estimated. An improvement deemed adequate to match the FCC-ee
experimental precision might require a calculation beyond two loops, which may be beyond
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S =
1

M2
Z

ge
γgµ

γ + ge
γgµ ′

Z + ge ′
Z gµ

γ + Sbox

e−

e+

f

f

γ

e−

e+

f

f

Z

e−

e+

f

f

W
W

Current status: full 1-loop for gℓ
γ, gℓ ′

Z , Sbox

Bardin et al. ’99 (ZFITTER 6.21)

Relative impact on Aµµ
FB(s2) − Aµµ

FB(s1)

for √s1 = 88 GeV, √s2 = 95 GeV:

gℓ
γ 1-loop: 2 × 10−4

gℓ
Z 1-loop: 1 × 10−3

Sbox 1-loop: 1 × 10−3

Box	+	Vertex		
EW	correcVon		

IFI	at	be|er	than	1%	to	reach	the	
required	precision	on	αQED(mZ

2)	:		
work	in	progress		



Z	pole	:	effects	on	EW	fit		
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Z	pole	detector	requirements		
The	performance	of	a	modern,	general-purpose,	e+e−	detector	are	adequate	for	
precision	physics	at	the	Z	pole	with	FCCee/CEPC	

acceptance	effects,	related	to	the	knowledge	of	large-detector	boundaries	and	
of	tracking	efficiency	should	be	given	special	a|enVon	

the	mechanical	stability	of	(luminosity)	detectors	should	be	improved,	requiring	an	
accuracy	in	detector	posiVon	at	the	≈	2	μm	level	

efficient	detecVon	of	photons	and	excellent	measurement	of	their	
energy	is	important,	for	tau	polarizaVon	couplings	and	radiaVve	events.	

idenVficaVon	of	secondary	vertexes	from	B	and	C	hadron	decays	is	very	relevant	
for	HF	quark	couplings.	A	performance	similar	and	be|er	than	modern	LHC	
detectors	should	be	the	target	(a	factor	3	be|er	than	LEP	detectors).	
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WW	threshold		
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ΔmW =
dσ
dmW

"

#
$

%

&
'

−1

Δσ

At	LEP2		√s=161	GeV	σ=4pb		
ε=0.75,		σB=300	�	

p=0.9	:	εp≈0.68	(@161)	
è	mW=80.40±0.21	GeV	
with	11/pb	@ECM=161	GeV	



mW	from	σWW:		sensiVvity	vs	ECM	
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√εp		with	fixed	:		ε=0.75	and	σB=0.3pb	

σWW	with	YFSWW3	1.18	

sta$s$cal	precision		
with	L=	8/ab	è	Δmw≈0.35	MeV	

need	syst	control	on	:	

•  ΔE(beam)<0.35	MeV	(4x10-6)	

•  Δε/ε,	ΔL/L	<	2	10-4	

•  ΔσB<0.7	�		(2	10-3)	
Max	stat	sensi9vity	at	√s=2mW+600	MeV	

=		161.4	GeV	



 (GeV)s
155 160 165 170

(W
W

) (
pb

)
σ

0

2

4

6

8

10

12   FCCee W-pair threshold
=2.085 GeVWΓ=80.385 GeV  Wm

=2.085 GeVWΓ,  =79.385-81.835 GeVWm
=1.085-3.085 GeVWΓ=80.385 GeV,  Wm

ΓW	from	σWW		
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Measure	σww	in	two	energy	points	E1,	E2	
with	a	fracVon	f	of	lumi	in	E1	
è	determine	both	mW	&	ΓW	
	
Determine	f,	E1,	E2	such	to	mimimise	(ΔΓW,	
ΔmW)			with	some	target		
	
Evaluate	loss	of	ΔmW		precision	in	the	single	
parameter	(mW)	determinaVon		
wrt	scenario	of	running	only	at	an	opVmal	
E0=161	point			dσWW/dΓW	=0		

at	ECM~162.3	GeV			
~2mW	+	1.5	GeV	



luminosity fraction
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mW	&ΓW	from	σWW		
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ΔΓW	

ΔmW	 ΔmW	

scan	of	lumi	frac$ons	

ΔmW	,	ΔΓW:		from	figng	both	
ΔmW	:	from	figng	only	mW	

with	E1=157.1	GeV 		E2=162.3	GeV		f=0.4	
ΔmW=0.60	ΔΓW=1.5		ΔmW=0.56	(MeV)	

èΔαS≈(3	π/2)ΔΓ/Γ≈		0.003		
with	E1=157.33	GeV		E2=162.62	GeV		f=0.4	
ΔmW=0.65	ΔΓW=1.6		ΔmW=0.60	(MeV)	

with	resonant	
depolarizaVon	spin	
tune	constraints		



W	decay	BR		
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23/02/2005
W Leptonic Branching Ratios
ALEPH 10.78 ±  0.29
DELPHI 10.55 ±  0.34
L3 10.78 ±  0.32
OPAL 10.40 ±  0.35

LEP W→eν 10.65 ±  0.17
ALEPH 10.87 ±  0.26
DELPHI 10.65 ±  0.27
L3 10.03 ±  0.31
OPAL 10.61 ±  0.35

LEP W→µν 10.59 ±  0.15
ALEPH 11.25 ±  0.38
DELPHI 11.46 ±  0.43
L3 11.89 ±  0.45
OPAL 11.18 ±  0.48

LEP W→τν 11.44 ±  0.22

LEP W→lν 10.84 ±  0.09
χ2/ndf = 6.3 / 9

χ2/ndf = 15.4 / 11

10 11 12
Br(W→lν) [%]

Winter 2005 - LEP Preliminary

23/02/2005

W Hadronic Branching Ratio

ALEPH 67.13 ±  0.40

DELPHI 67.45 ±  0.48

L3 67.50 ±  0.52

OPAL 67.91 ±  0.61

LEP 67.48 ±  0.28
χ2/ndf = 15.4 / 11

66 68 70

Br(W→hadrons) [%]

Winter 2005 - LEP Preliminary

Lept	universality	test	at	2%	level	
tau		BR		~2.7	σ	larger	than	e/mu	

è	FCCee		@	4	10-4	level		

q/	l	universality	at	0.6%	
è	FCCee		@	10-4	level		

will	need	excellent	control	of	lepton	id	
i.e.	cross	contaminaVons	in	signal	channels		
(	τàe,μ	in	the	e,μ	channels	and	v.v.	)	

8/ab@160GeV	+	5/ab@240GeV		
è 30M+	80M		W-pairs		

è ΔBR(qq)	(stat)	=[1]	10-4	(rel)	
è 	ΔαS≈(9	π/2)ΔBR≈	2	10-4	

		
è ΔBR(e/μ/τv)(stat)=[4]10-4	(rel)	

Flavor	tagging	would	also	allow	to	measure	coupling	to	c	&	b-quarks	(Vcs,	Vcb,..	)		



Direct	mW	reconstrucVon	
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(	Marina	Béguin	)	
Studies	in	the	four-jet	channel	

	
PYTHIA	+	CLD	simulaVon	

Jet	clustering	with	Durham	algorithm	
events	constrained	to	form	four	jets			
di-jet	pairing	:	closest	to	the	nominal	mW		

		

Three	W		mass	esVmators		
•	Raw	dijet	mass		
•	4C	kinemaVc	jets	momenta		Rescaling		
•	KinemaVc	Fit	:	minimising	jets	χ2		

The	expected	staVsVcal	uncertainty	on	the	W	mass	peak	value	(∆mW,stat)	is	esVmated	with	
a	binned	max	likelihood	fit	on	the	reconstructed	mW	distribuVons,	using	templates	with	
different	nominal	W	mass	values.	The	final	expected	uncertainty	is	the	result	of	the	
combinaVon	of	the	measurements	of	the	two	reconstructed	masses.	

ECM=162.6	GeV	



Direct	mW	reconstrucVon	

CEPC	Roma		-	24/05/18	 P.	Azzurri	-	EW	:	Z	&	WW	 22	

combined	sta9s9cal	uncertainVes	
∆MW	(4C	fit)	=	1.02	MeV		
∆MW	(4C	rescaling)	=	1.18	MeV		
∆MW	(raw	mass)	=	1.55	MeV	

Smaller	dijet	mass	tends	to	be	off-shell	
Larger	dijet	mass	is	on-shell	

at	the	W-pair	threshold		



Direct	mW	reconstrucVon	
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∆MW	(stat)	summary	with	data	at	different	ECM	

Coming	soon:	
•	5C	kinemaVc	fit	with	equality	of	the	two	dijet	masses		
•	Study	of	the	semi-leptonic	WW	decay	channel	

OpVonal	possibility	of	using	cone	
constraints	on	jets:		the	mass	
resoluVon	is	degraded	~20%	because	
of	the	parVcle	informaVon	loss.		
	
This	loss	is	expected	to	be	
compensated	by	a	decrease	of	the	
FSI	systemaVc	uncertainty.		
	



Direct	mW:	systemaVcs	?	
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lepton	and	jet	uncertainVes	
from	(Z)	calibraVon	data	

5/ab@240GeV		
è	ΔmW	(stat)=	0.5	MeV	

jet	boost	

Is	ΔEbeam~1MeV		at	ECM=240-365	GeV	possible	?			
With	radiaVve	Z-returns	(Zγ)	events	?	Maybe	!	

Detector	PF	capabili9es	

θ,	β:	jet	polar	angles	and	velociVes	
in	the	CM	frame		



Triple	gauge	couplings	
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WWγ	WWZ	

SU(2)⊗U(1)	Gauge	Cancella$ons	

Weν	

(Jiayin	Gu	)	

100 Chapter 5: Measurement of Triple Gauge Couplings and Polarization
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Figure 5.16: Definition of the angles in an e+e− → W+W− event.

electron beam and �W is the flight direction of the parent W -boson. The decay angles
can be classified corresponding to the decay type (hadronic or leptonic). The angles
describing the hadronic (leptonic) decay are called cos θ∗h (cos θ∗l ) and φ∗h (φ∗l ).

The hadronic decay angles suffer from a two-fold ambiguity, due to the unknown charge
of the quarks. The two quarks are back-to-back in the rest frame of the W -boson and
the resulting ambiguity is:

(cos θ∗h,φ
∗
h)↔ (− cos θ∗h,φ

∗
h + π), (5.16)

which is folded in the following way:

φ∗h > 0→ (cos θ∗h,φ
∗
h)

φ∗h < 0→ (− cos θ∗h,φ
∗
h + π). (5.17)

However, for the present study only the angles describing the leptonic decay are used.
Their distributions are shown in Fig. 5.17, with the respective resolutions. Fig. 5.18
compares the cos θW distribution with no anomalous TGCs with a scenario in which
an anomalous value was assigned to the gZ

1

coupling in order to exemplify the impact
of the TGCs on the angular observables.

5.4.4 Simultaneous Fit

The distributions used in the combined fit are multi-dimensional distributions of the
angular observables. With all four decay angles, in addition to the cos θW observable,
one would need five-dimensional distributions. Filling a five-dimensional distribution
leads to poor statistics for the single bins and does not appear to be a convenient
choice. It was therefore decided to move to three-dimensional distributions, using only
the angles which describe the leptonic decay cos θ∗l and φ∗l , together with cos θW . This

anomalies	affect:		
the	total	rates	σ,		

	the	produc9on	angles	θW		
the	decay	angles	θ*	φ*	



Triple	gauge	couplings	
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A	large	benchmark	value	(0.5)	is	shown	to	make	the	effects	of	the	aTGCs	
visible.		Since	the	precision	reach	of	the	aTGCs	are	at	O(10−3)	or	be|er,	a	
linear	approximaVon	works	very	well	for	this	analysis.	
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LEP2	precision	:	2-4	10-2		
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A	binned	chi-square	fit	is	performed	to	esVmate	the	
precision	reach	of	the	three	aTGCs	at	the	FCCee.		

Only	the	semileptonic	channel,	with	one	W	decaying	to	e	or	μ	is	used.		
The	chi-square	is	summed	over	all	bins	of	the	five	angles,	considering	only	staVsVcal	
uncertainVes	of	signal	events.	The	ambiguiVes	in	the	reconstrucVons	of	the	hadronic	W	
decay	angles	(which	are	“folded”)	are	taken	into	account.	



WW	acceptance		
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impact	of	theore9cal	uncertain9es		will	hopefully	not	be	limi9ng		
but	work	is	needed	to	reach	the	target	0.2	10-3	precision	level	

how	do	we	control	acceptance	at	the	10-4	level	(0.01%)	?	
è	aim	for	the	highest	possible	acceptance	and	efficiency	WP	

•  lepton	tracking	reco	efficiency	(was	controlled	at	the	10-3	level	at	LEP2)		
•  lepton	iden9fica9on	performances		

•  @LEP2	10-3	level:		(T&P	with	Z):	effects	on	total	Δσ	miVgated	down	to	
the	2-3	10-4	level	thanks	to		τàe,u	channel	migraVons	recoveries	

•  would	need	lepton-id	at	10-4		level	for	max	BR	precision	
•  jet	reconstrucVon	and	energy	calibra9on	

•  @LEP2	1-2%	level	è	0.1%	on	Δε:	
•  FCCee	would	need	calibraVon	at	0.1%	level	(10x	be|er)	with	control	

data	;	best	possible	jet	energy	resoluVon	helps		
•  missing	momentum	scale/resoluVon	:	similar	to	jet	energy	for	qqlv	
•  lepton	isola9on	

•  @LEP2	control	at	the	Δε~2	10-3	level:	need	to	do	10x	be|er		
•  jet	modeling		(signal	&	bkg)		

•  was		important	syst	on	σWW@LEP2		(at	the	2	10-3		level)	



WW	background	control		
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2-fermion		:	ττ, qq 	
4-fermion	:	γγàττ,llνν,		Zee,	Weν	 
	
some	4f	bkg	is	idenVcal	to	the	
signal	final	state	è	CC03-4f	
interferences		

decay	 efficiency	 purity	 bkg																										[LEP1996]	

lνlν	 70-80%	 80-90%	 50n	(ττ,γγàττ,Zγ*àννll)		

eνqq	 85%	 ~90%	 30n	(qq,	Zee,	Zγ*)			-10n	(Weν)	

µνqq	 90%	 ~95%	 10n	(Zγ*,qq)	

τνqq	 50%	 80-85%	 50n	(qq,	Zγ*)	

qqqq	 90%	 ~90%	 ~200n		(qq	(qqqq,qqgg))	

concern	is	mostly	on	the	
four-jet	background	

measure	forward	electrons	(θ≥0.1	rad)	for	
Zee	Wev	:	determine	forward	pole		
dσ/dθ	and	WW	interference	effects	

acceptance	down	to	θ=0.1			[cosθ=	0.995]	
would	also	cover	forward	jets		

measure	directly	the	backgrounds	with	very	
different	S/B	levels	at	different	ECM	points		

limiVng		correlated	systs	
can	cancel	out	taking	data	at	more		
ECM		points		where			
	
	
	
differenVal	factors	are	equal	

dσ
dmW

!

"
#

$

%
&

−1
dσ
dΓW

"

#
$

%

&
'

−1
dσ
dmW

!

"
#

$

%
&

−1

σ
dσ
dΓW

"

#
$

%

&
'

−1

σ



Conclusions	
•  CEPC/FCCee	will	be	a	total	game-changer	for	EW	W/Z	physics	measurements	
•  No	“a	priori”	walls	on	the	road	map	to	achieve	the	FCC	goals	for	EW	precision	

measurements	but	a	lot	of	work,	firstly	on	the	theoreVcal	calculaVons	side	
•  At	the	Z,	off	peak	data	will	play	an	important	role	(more	than	at	LEP	Vmes)		

–  can		deliver	aQED(mZ
2)	to	3	×	10-5	

•  The	WW	threshold	lineshape	is	a	great	opportunity	to	measure	both	mW	and	ΓW:	
–  opVmal	points	to	take	data	are	√s=2mw+1.5	GeV	(Γ-insensi9ve)	and	√s=2mw-2-3	GeV	(-Γoff	shell)	

•  Huge	potenVal	for	other	W	physics	measurements	including	higher	energy	data	:	
–  direct	mW	,	W	BRs,	TGCs	

•  Work	from	experimentalist	needed	to	evaluate	with	care	limiVng	systemaVcs,	study	
ways	to	overcome	them,	and	reflect	on	the	detector	design	consequences:	
opportuniVes	to	contribute	

CEPC	Roma		-	24/05/18	 P.	Azzurri	-	EW	:	Z	&	WW	 30	


