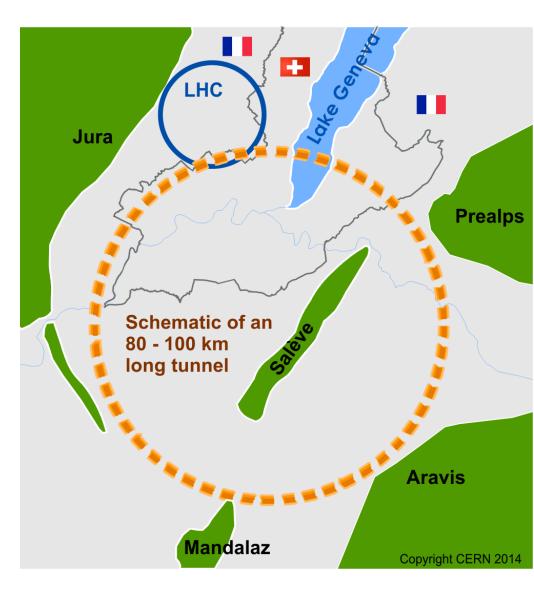


Workshop on the Circular Electron-Positron Collider - EU edition

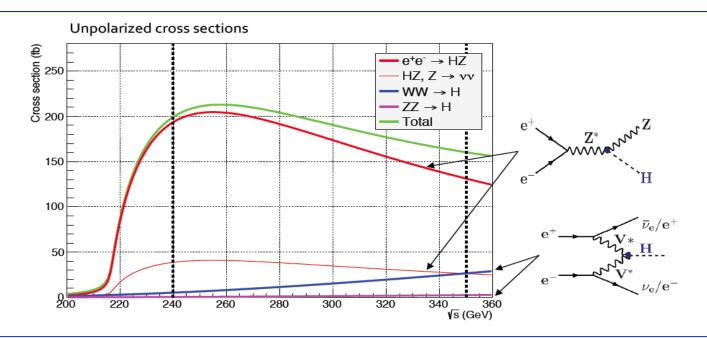
24-26 May 2018 Università degli Studi Roma Tre Europe/Rome timezone

FCCee Physics/Detectors

Roberto Tenchini INFN Pisa


Acknowledgements: P. Azzi, P. Azzurri, A. Blondel, M. Boscolo, M. Dam, J. Gu, P. Janot, S. Monteil, F. Piccinini

The Future Circular Collider (FCC)

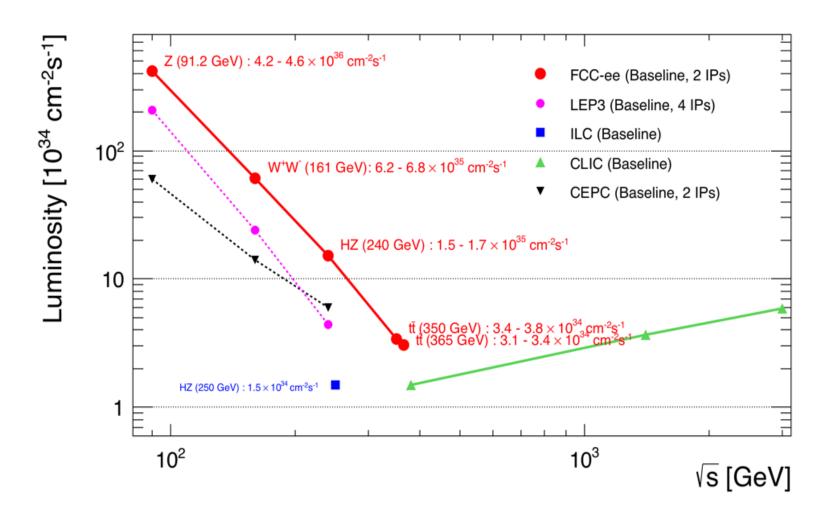

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements
- ~100 km tunnel infrastructure in Geneva area, site specific
- <u>e⁺e⁻ collider (FCC-ee),</u> as potential first step
- **HE-LHC** with *FCC-hh* technology
- *p-e* (*FCC-he*) option,
 e⁻ from ERL

e+e- circular colliders revitalized by Higgs discovery

- The Higgs mass is low: at LEP we were close ... sensitive up to 115 GeV, (125/115=1.09)
- Synchrotron energy loss per turn goes as E^4/ρ , increasing the radius by a factor 3 you have $(1.09)^4/3=0.47$, RF cavities "a la LEP" in principle would be enough !

Excellent opportunity to make a significant jump in precision for the two nearby EW vector bosons (W,Z) and the heaviest quark (top):

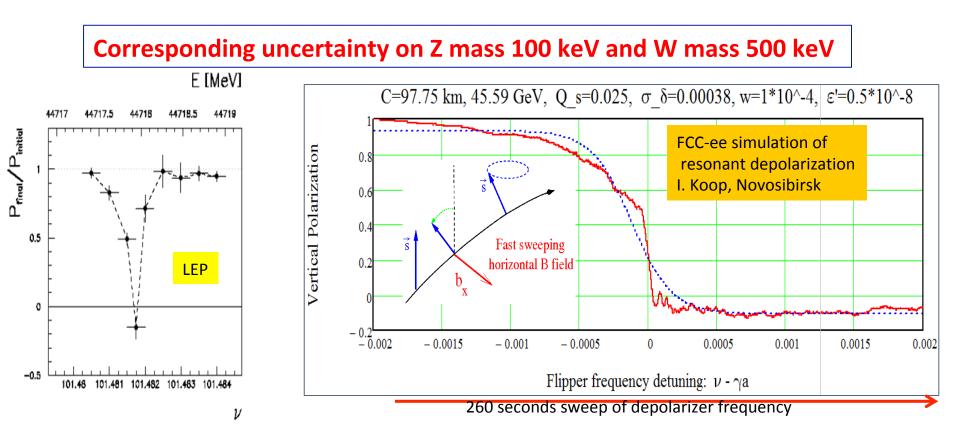

change the landscape of electroweak precision measurements !

FCC-ee collider parameters

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5

Lepton Colliders luminosities

FCC-ee operation model


working point	luminosity /IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]	
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4	
Z later	200	52 ab ⁻¹ /year			
W	25	7 ab ⁻¹ /year	10 ab ⁻¹	1	
Н	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3	
machine modification	on for RF inst	allation & rearrange	ment: 1 ye	ear	
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1	
top later (365	1.4	0.36 ab⁻¹/year	1.5 ab ⁻¹	4	
GeV) total	program durati	on: 14 years - including i	machine mo	difications	
phase 1 (Z, W, H): 8 years, phase 2 (top): 6 years					

FCC-ee Beam Polarization and Energy Calibration

- **1.** Priority from Physics : $\Delta E/E \sim O(10^{-6})$ around Z pole and WW threshold $\rightarrow Z,W$ mass&width
- 2. Exploit natural transverse beam polarization present at Z and W

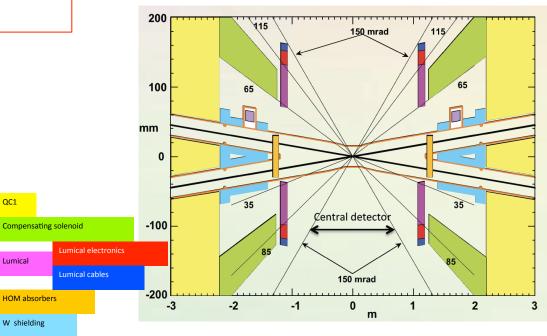
2.1 This is a unique capability of e+e- circular colliders

- 2.2 Sufficient level is obtained if machine alignment is good enough for luminosity
- 2.2 Resonant depolarization has intrinsic stat. precision of $\sim 10^{-6}$ on spin tune
- 2.3 Required hardware (polarimeter, wigglers depolarizer) is defined & integrated
- 2.4 Running mode with 1% non-colliding bunches and wigglers defined

Detector and **MDI** general requirements at FCC-ee

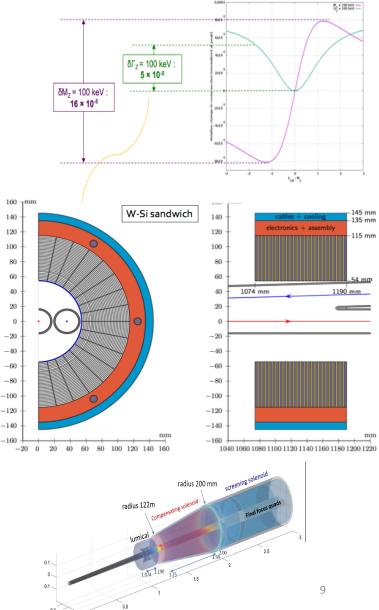
OC1

Lumical


- Be suitable for high precision measurements • \rightarrow precise tracking in a low X0 tracker
- Excellent lepton id and momentum resolution •
- Excellent photon id and energy/direction res. •
- Precise angular (and energy) jet measurement •
- Particle flow friendly • \rightarrow adequate calorimeter granularity
- High granularity vertex detector with b and c • tagging capabilities

 \rightarrow in a low occupancy environment maximum event rate 20 kHz @ Z peak

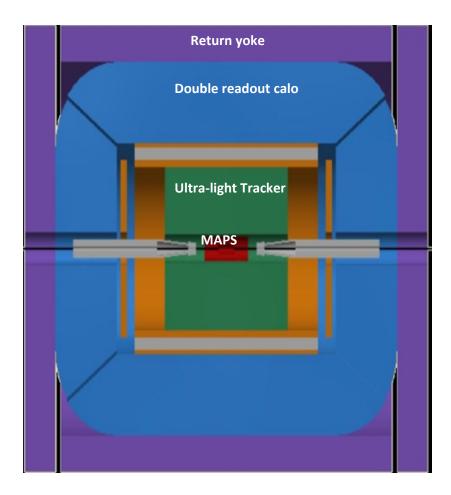
Two benchmarks for CDR


- **IDEA**: circular collider detector from present state-of-the-art technology
- **CLD**: CLIC detector revisited for FCC-ee

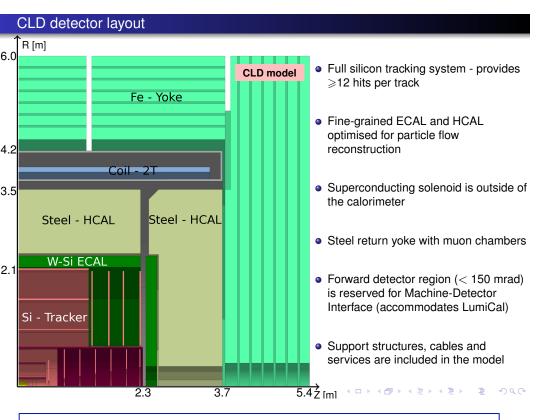
- Asymmetric optics with beam crossing angle of 30 • mrad
- IP displaced by about 9.4 m wrt proton beam line •
- Maximum magnetic field 2T (compensation) ٠
- Beam pipe radius 15 mm •
- Last quadrupole L* =2.2 m •
- Detector has to "stay above" the 100 mrad line

Luminometer

- Using small angle Babha scattering, Very precise normalization needed: absolute normalization at 10⁻⁴ and relative to 5x10⁻⁵
- Basic design: Cylindrical detectors of W+Si sandwich centered around, and perpendicular to the outgoing beam line (asymmetric)
- Studied effect of:
 - synchrotron radiation: negligible with shielding
 - beam background: ee pairs soft and and close to detector boundaries. Vs dependence
 - beam-gas background: negligible
- Focusing effect of opposite beam to be studied
- To match the goal an accuracy on detector construction and boundaries of \approx 2 μm is required
 - clever acceptance algorithms, a la LEP, with independence on beam spot position should be extended to beam with crossing angle
 - luminometer fixed to central beam pipe

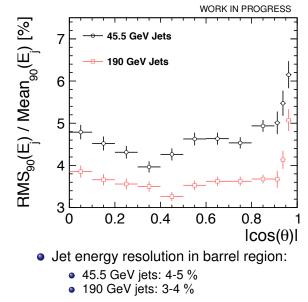

FCC-ee detector: the IDEA concept

- Vertex detector, MAPS (a la ALICE)
- Ultra-light drift chamber with PID (a la MEG2)
 - $\square \approx 0.04 \text{ XO}$ up to the preshower face
- Pre-shower counter


 \square defines acceptance \thickapprox 10-20 μm precision

- Double read-out calorimetry (RD52 DREAM)
- ◆ 2 T solenoidal magnetic field
- Possibly instrumented return yoke
- Possibly surrounded by large tracking volume (R = 8m) for very weakly coupled (long-lived) particles

Two Options: Calorimetry inside or outside coil



FCC-ee detector: CLD (CLIC inspired)

- Tracking fully efficient from 700 MeV
 - Pt Resolution of 4x10⁻⁵GeV⁻¹ for 100 GeV muons
- >95% Photon and electron efficiency
 - Energy resolution in barrel region 3-5%
- Very similar to original CLIC detector

Z & W Physics observables at FCC-ee

Integrated luminosity goals for Z and W physics

- 150 ab⁻¹ around the Z pole (~ 25 ab⁻¹ at 88 and 94 GeV, 100 ab⁻¹ at 91 GeV)
- 10 ab⁻¹ around the WW threshold (161 GeV with ±few GeV scan)

LEP (4 IPs) 0.6 fb⁻¹ 2.4 fb⁻¹

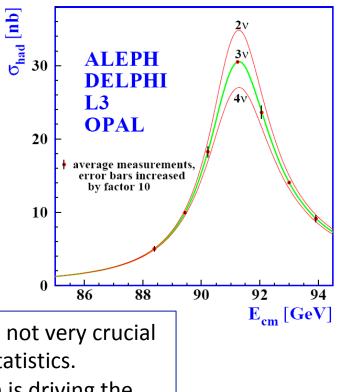
TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- $R_I = hadronic/leptonic width (\alpha_s(m_Z^2), lepton couplings)$
- peak cross section (invisible width, N_{ν})
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_{Z}^{2})$, lepton couplings)
- Tau polarization (sin² θ_{eff} , lepton couplings, $\alpha_{QED}(m_Z^2)$)
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

OkuWW (10⁸ WW)

From data collected around and above the WW threshold:


- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^{W} = \Gamma_{had} / \Gamma_{lept} (\alpha_{s}(m_{Z}^{2}))$
- + Γ_{e} , Γ_{μ} , Γ_{τ} (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

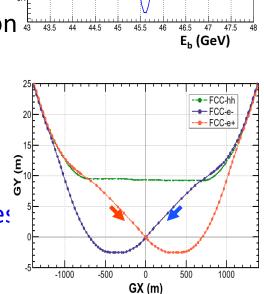
Determination of Z mass and width

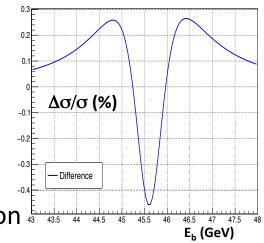
 uncertainty on m_z (≈ 100 KeV) is dominated by the correlated uncertainty on the centre-of-mass energy at the two off peak points

at FCC-ee continuous E_{CM} calibration (resonant depolarization) gives $\Delta E_{CM} \approx 10$ KeV (stat) + 100 KeV (syst)

- the off peak point-to-point anti-correlated uncertainty has a similar impact (\approx 100 KeV) on $\Gamma_{\rm Z}$

The exact choice of the off peak energies for m_z , Γ_z is not very crucial at FCC-ee (differently from LEP) because of the high statistics. Instead the exact choice is crucial for $\alpha_{QED}(m_z^2)$ which is driving the choice of $v_{s_-} \approx 88 \text{ GeV}$ and $v_{s_+} \approx 94 \text{ GeV}$

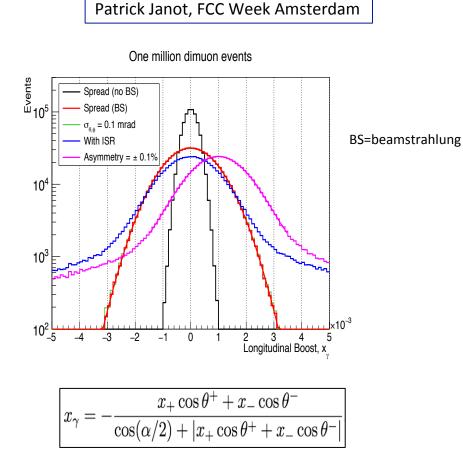

FCC-ee precision calls for a model independent fit of the lineshape (S-matrix) where γ -Z interference is measured independently, A measurement of the γ -Z interference term for 100 keV precision for m_z, Γ_z requires 100 fb⁻¹ collected at CM energy of \approx 60-70 GeV ... or use the 160 GeV run !


Γ_{z} and beam energy spread

 $\delta\sigma \simeq 0.5 \frac{d^2\sigma}{dF^2} \epsilon_{CMS}^2$

 The beam energy spread affects the lineshape changing the cross section by

- The size of the energy spread ($\approx 60 \text{ MeV}$) and its impact on Γ_{z} ($\approx 4 \text{ MeV}$) is similar to LEP, but the approach to tackle the corresponding systematic uncertainty different because of FCC-ee beam crossing angle
- At LEP it was controlled at 1% level by measuring the longitudinal size of the beam spot, at FCC-ee can be measured with similar precision from the scattering angles of μ⁺μ⁻ events


Control of energy spread with $\mu^+\mu^-$

- FCC-ee: Asymmetric optics with beam crossing angle α of 30 mrad
- α is measured in e+e- $\rightarrow \mu^+\mu^-(\gamma)$

$$\alpha = 2 \arcsin\left[\frac{\sin\left(\varphi^{-} - \varphi^{+}\right)\sin\theta^{+}\sin\theta^{-}}{\sin\varphi^{-}\sin\theta^{-} - \sin\varphi^{+}\sin\theta^{+}}\right]$$

together with γ (ISR) energy, both distributions sensitive to energy spread.

- Energy spread measured at 0.1% with 10⁶ muons (4 min at FCC-ee)
- Current calculations of ISR emission spectrum sufficient
- Detector requirement on muon angular resolution 0.1 mrad

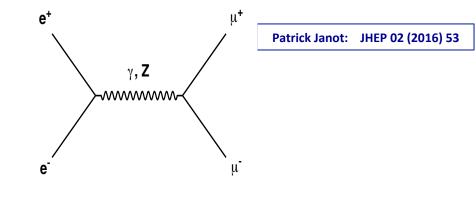
Can keep related systematic uncertainty on $\Gamma_{\rm Z}$ at less than 30 keV

$\sigma_{\text{had}},$ Z invisible width, number of neutrino families

- Goal on theoretical uncertainty from higher order for low angle Bhabha is 0.01%, corresponding to a reduction of a factor 8 in uncertainty on number of light neutrino families (we are already not far ≈ 0.02%)
 - Another goal is a point to point relative normalization of 5 $10^{\text{-5}}$ for $\Gamma_{\rm Z}$

$$\frac{\Gamma_{inv}}{\Gamma_l} = \frac{\Gamma_Z}{\Gamma_l} - R_l - 3 = \left(\frac{12\pi R_l}{\sigma_{had}^0 M_Z^2}\right)^{1/2} - R_l - 3 = N_\nu \cdot \frac{\Gamma_\nu}{\Gamma_l}$$

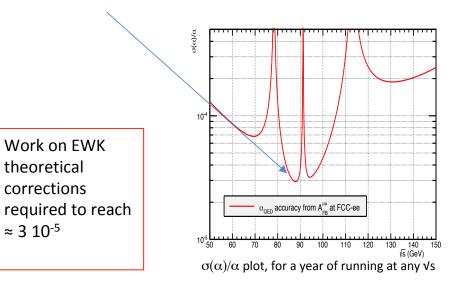
- Can potentially reach an uncertainty of 0.01% also with e+e-→γγ, statistically 1.4 ab⁻¹ are required (theory uncertainty already at this level, requires control of large angle Bhabha)
- A precise measurement of the the invisible width is also obtained from single photon events at higher centre-of-mass energy from $Z \rightarrow vv\gamma$


$$E_{\gamma} = \frac{s - M_Z^2}{2\sqrt{s}}$$

e.m. coupling: direct measurement of α_{OFD} (m

≈ 3 10⁻⁵

At LEP hadronic contributions to the vacuum polarization as external input (dispersion relations+ lower energy experiments) $\Delta_{rel} \approx 10^{-4}$


FCC-ee: direct measurement with better precision

$$A_{FB}^{\mu\mu} = \frac{N_F^{\mu+} - N_B^{\mu+}}{N_F^{\mu+} + N_B^{\mu+}} \approx f(\sin^2 \vartheta_W^{eff}) + \alpha_{QED}(s) \frac{s - m_Z^2}{2s} g(\sin^2 \vartheta_W^{eff})$$

Туре	Source	Uncertainty
	E_{beam} calibration	1×10^{-5}
	$E_{\rm beam}$ spread	$< 10^{-7}$
Experimental	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
	$m_{ m Z}$ and $\Gamma_{ m Z}$	1×10^{-6}
Parametric	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
	QED (ISR, FSR)	$< 10^{-6}$
Theoretical	Missing EW higher orders, QED(IFI)	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}
(except missing EW higher orders)	Statistics	3×10^{-5}

Optimal centre-of-mass energies for a 3×10⁻⁵ uncertainty on α_{OED} . Vs_ = 87.9 GeV and Vs_ = 94.3 GeV

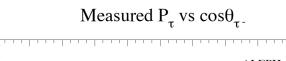


FCC-ee strategy for neutral couplings and $sin^2\theta_{eff}$

$$\mathcal{A}_e = \frac{2g_{Ve}g_{Ae}}{(g_{Ve})^2 + (g_{Ae})^2} = \frac{2g_{Ve}/g_{Ae}}{1 + (g_{Ve}/g_{Ae})^2}$$

- Muon forward backward asymmetry at pole, $A_{FB}{}^{\mu\mu}$ (m_z) gives $sin^2\theta_{eff}$ with 5 $10^{\text{-}6}$ precision
 - uncertainty driven by knowledge on CM energy
 - assumes muon-electron universality
- Tau polarization can reach similar precision without universality assumption
 - tau pol measures A_e and A_τ , can input to $A_{FB}^{\mu\mu} = 3/4 A_e A_\mu$ to measure separately electron, muon and tau couplings, (together with Γ_e , Γ_μ , Γ_τ)
- Asymmetries A_{FB}^{bb} , A_{FB}^{cc} provide input to quark couplings together with Γ_{b} , Γ_{c}

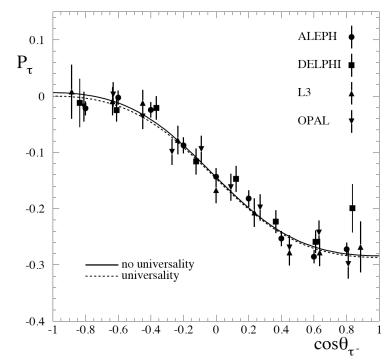
NOTE that LEP approach was different: all asymmetries were limited by statistics and primarily used to measure $sin^2\theta_{eff}$


tau polarization plays a central role at FCC-ee

• Separate measurements of A_e and A_{τ} from

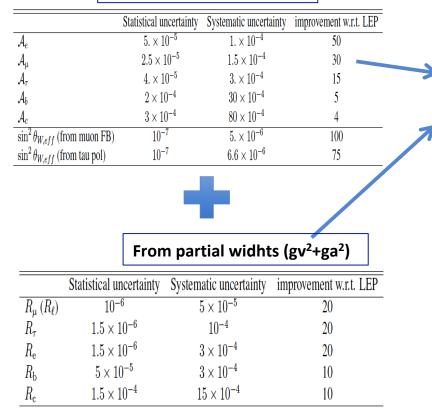
$$P_{\tau}(\cos\theta) = \frac{A_{pol}(1+\cos^2\theta) + \frac{8}{3}A_{pol}^{FB}\cos\theta}{(1+\cos^2\theta) + \frac{8}{3}A_{FB}\cos\theta}$$

$$A_{pol} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -A_f$$
$$A_{pol}^{FB} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{F,L}} = -\frac{3}{2}A$$


$$pol^{FB} = \frac{O_{F,R} - O_{B,R} - O_{F,L} + O_{B,L}}{O_{tot}} = -\frac{3}{4}A_e$$

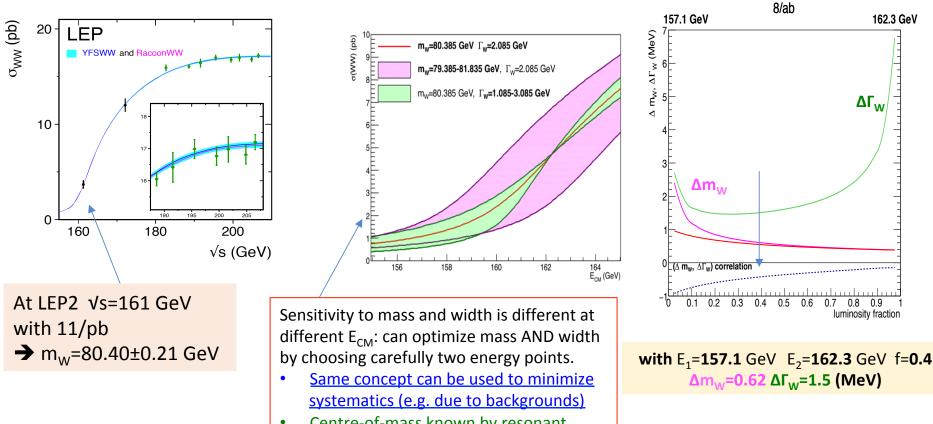
At FCC-ee

- very high statistics: improved knowledge of tau parameters (e.g. branching fraction, tau decay modeling) with FCC-ee data
- use best decay channels (e.g. $\tau \rightarrow \rho v_{\tau}$ decay • very clean), note that detector performance for photons / π^0 very relevant


 \rightarrow measure sin² θ_{eff} with 6.6 10⁻⁶ precision

Precisions on vector and axial neutral couplings

From Asymmetries (gv/ga)


Relative precisions

fermion type	g_a	g_v
e	$1.5 imes 10^{-4}$	2.5×10^{-4}
μ	$2.5 imes 10^{-5}$	$2. \times 10^{-4}$
τ	$0.5 imes 10^{-4}$	$3.5 imes 10^{-4}$
b	$1.5 imes 10^{-3}$	$1 imes 10^{-2}$
с	2×10^{-3}	1×10^{-2}

Improvements 1 – 2 orders of magnitudes with respect to LEP, depending on the fermion (Still need to explore the potential for a measurement of the s quark coupling)

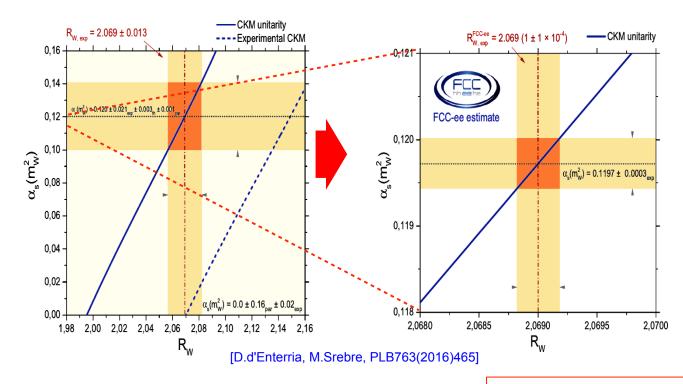
W mass and width from WW cross section

<u>Centre-of-mass known by resonant</u> <u>depolarization (available at ≈ 160 GeV)</u>

need syst control on :

 $\Delta \epsilon / \epsilon$, $\Delta L / L < 2 \ 10^{-4}$ $\Delta \sigma_{\rm R} < 0.7 \ {\rm fb} \ (2 \ 10^{-3})$

ΔE(beam)<0.35 MeV (4x10⁻⁶)

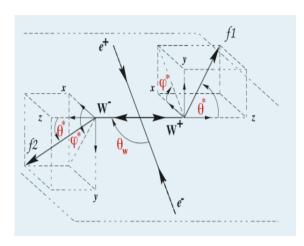

 <u>Luminosity from Bhabha, requirements</u> <u>similar to Z pole case</u>

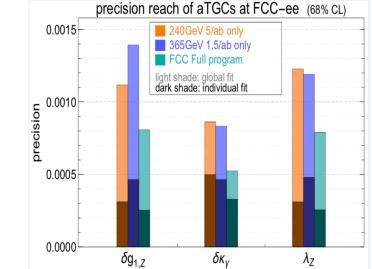
α_s via hadronic W decays

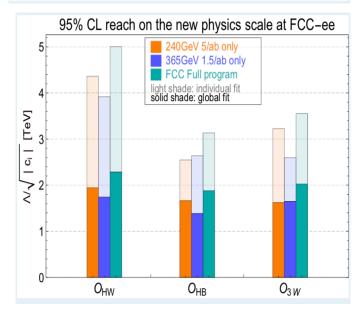
Computed at N^{2,3}LO:

$$\Gamma_{\rm W,had} = \frac{\sqrt{2}}{4\pi} G_{\rm F} m_{\rm W}^3 \sum_{\rm quarks \ i,j} |V_{\rm i,j}|^2 \left[1 + \sum_{\rm k=1}^4 \left(\frac{\alpha_{\rm s}}{\pi}\right)^k + \delta_{\rm electroweak}(\alpha) + \delta_{\rm mixed}(\alpha\alpha_{\rm s}) \right]$$

•<u>LEP</u>: Γ_W = 1405±29 MeV (±2%), BR_W = 0.6741±0.0027 (±0.4%) Extraction with large exp. & parametric (CKM V_{cs}) uncertainties today: α_s (M_z) = 0.117 ± 0.040 (±35%)

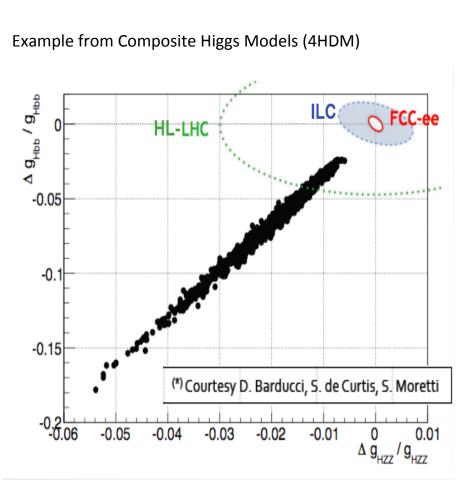

FCC-ee: – Huge W stats (×10⁴ LEP) will lead to: : $\Delta_{rel} \alpha_s < 0.3\%$ – TH uncertainty: $\Delta |V_{cs}|$ to be significantly improved (10⁻⁴) Can measure α_s at < 0.1% uncertainty combining Z, W, tau hadronic decays and jets rates & shapes


FCC-ee : probing the TGCs at high precision


- Based on expected luminosity at 161, 240, 350 and 365 GeV
- Consider CP-even dimension 6 operators, SU(2)XU(1) symmetry leaves three independent anomalous couplings

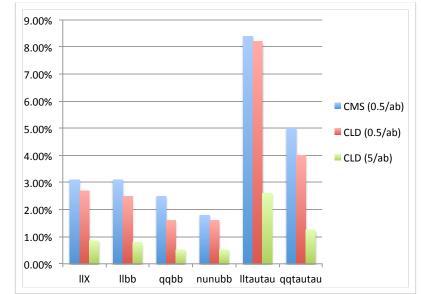
•

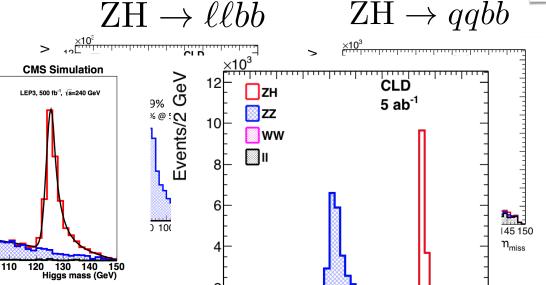
- Include both total cross section and angles
- For the moment only statistical uncertainties
- One order of magnitude improvement with respect to LEP



Jiayin Gu

Higgs couplings precision and sensitivity to new physics

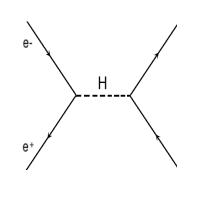


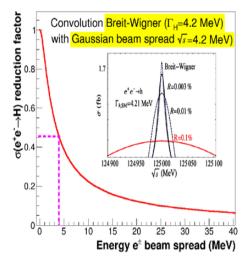

(HL- LHC measurements are model dependent)

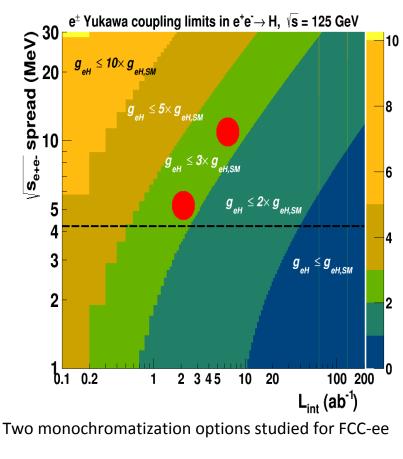
in %	HL-LHC	FCC-ee
gнz	2-4	0.21
gнw	2-5	0.43
g нb	5-7	0.64
g нс	-	1.0
gнg	3-5	1.2
g _{Hτ}	5-8	0.81
gнμ	5	8.8
g _{Hγ}	2-5	2.1
Гн	5-8%	1.5

Higgs couplings studies with realistic simulations and detectors

- Ultimate precision on Higgs couplings below 1% (and measurement of the total width) a milestone of the FCC physics program.
- Model independent determination of the total Higgs decay width
- New estimates of Higgs coupling precision made with custom simulation (PAPAS)

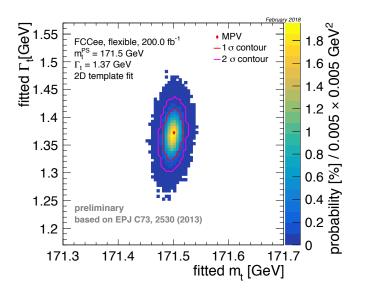


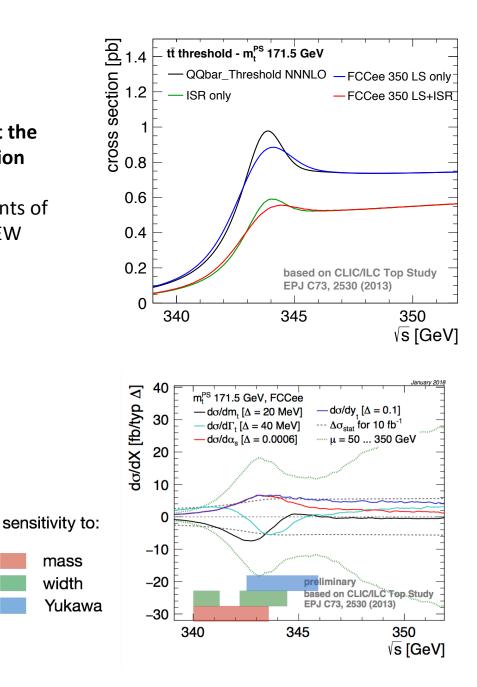

- CLD performs 10-35% better compared to results with CMS simulation
- now ready to study variation in detector design cost/performance


Higgs boson and first generation: s-channel production

Unique opportunity to measure the electron Yukawa coupling, highly challenging: $\sigma(ee \rightarrow H) = 1.6$ fb, further reduced to ≈ 0.3 fb accounting for the finite energy spread and ISR of the e± beams.

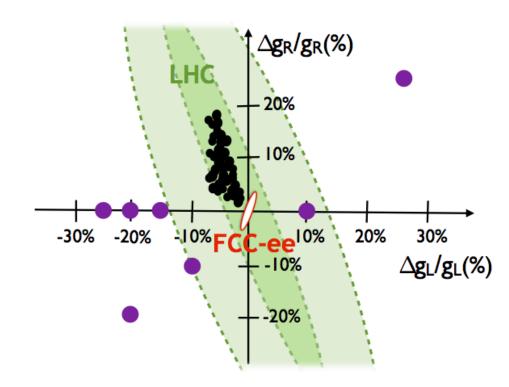
Requires beam "monochromatization" at 62.5 GeV

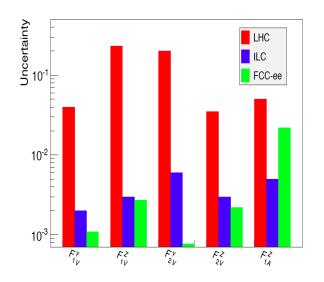



http://jacow.org/ipac2016/papers/wepmw009.pdf

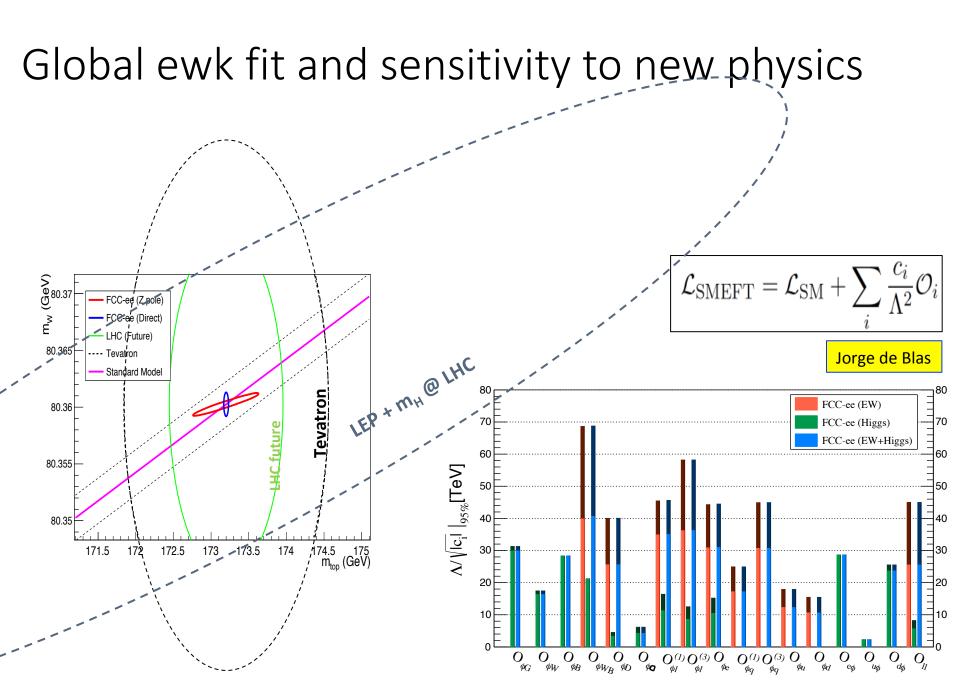
The TOP quark

- Precise measurements of top quark properties at the FCC-ee, coupled with precise theoretical calculation provide excellent discovery potential
- Threshold region allows most precise measurements of mass, width, and estimate of Yukawa coupling. NEW Study of optimizing the scan strategy.
- Running at 365 GeV to be used for other measurements such as top couplings, FCNC etc.




Mass only: 8.8 MeV (stat), 5.4 MeV (α_s [2 x 10-4]), 44 MeV (theo)

Electroweak couplings of the top quark


- •Large statistics and final state polarization allow a full separation of the ttZ/γ couplings with NO need for polarization in the initial state.
- •Optimal √s= 365-370 GeV

- Fit includes conservative assumptions detector performance
- Theory uncertainty on production mechanism dominates

FCC-ee expected precision of order 10⁻² to 10⁻³

Precision calculations for the FCC-ee

- From Workshop on EW precision calculations held in January.
- Next decade: complete 3 loop calculation, will provide the needed precision
- Need to invest adequate resources

Matches the demand in precision by the experiment !

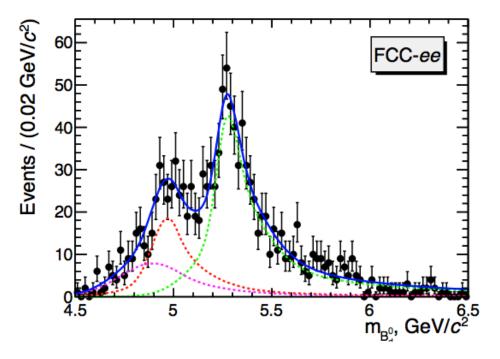
Bottom line: YES we will be able to use EWPO with the precision provided by the experiments !

		δ_1 :	δ_2 :	δ3:	δ4:	δ_5 :	$\delta \Gamma_Z$ [MeV]
		$\mathcal{O}(lpha^3)$	$\mathcal{O}(lpha^2 lpha_s)$	$\mathcal{O}(\alpha \alpha_s^2)$	$\mathcal{O}(lpha lpha_s^3)$	$\mathcal{O}(lpha_{bos}^2)$	$\sqrt{\sum\limits_{i=1}^5 \delta_i^2}$
Т	Ή1	0.26	0.3	0.23	0.035	0.1	0.5
Т	⁻ H2	0.13	0.15	0.11	0.017	10 ⁻⁴	$\sqrt{\sum\limits_{i=1}^{5} (\delta_i/2)^2} \sim 0.2$
Ţ	Н3	0.026	0.03	0.023	0.0035	10 ⁻⁴	$\sqrt{\sum\limits_{i=1}^5 (\delta_i/10)^2} \sim 0.05$

Three-loop corrections needed: theory estimations [3]

Table 2: At FCC-ee: $\Delta \Gamma_Z \sim 0.1$ MeV.

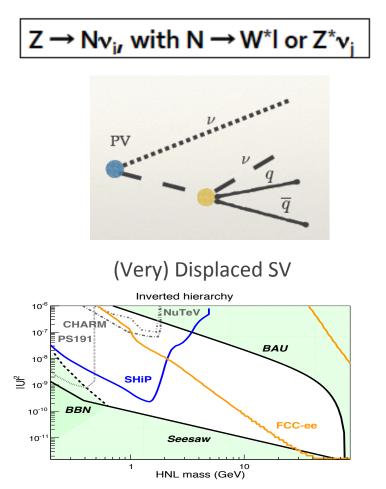
TH1 = **0.5 MeV** (2016): Estimate of residual uncertainty of theoretical errors for Γ_Z [4]. Does not match the FCC-ee demand.


TH2 = 0.2 MeV: Value derives from TH1 by assuming the uncertainty ("nogo") to be solved ("how-to") by calculating the unknowns at an accuracy of 50% (1 digit). Would be not sufficent.

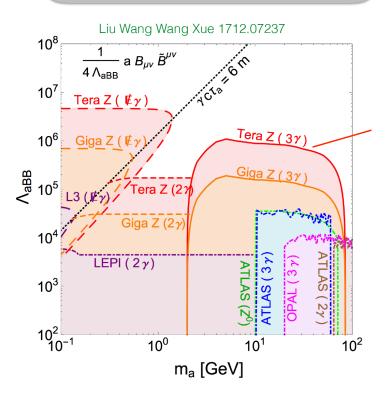
TH3 = **0.05 MeV**: Like TH2, but assuming an accuracy of 10% (corresponding to a knowledge of 2 relevant digits) for the so far unknown weak 3-loops and QCD 4-loops. Matches the demand.

Term δ_5 was unknown in TH1 and was determined in [3] with 4 relevant digits. The δ_5 is 5 times bigger than its assumed uncertainty in TH1!

Example of B physics at FCC-ee - $B^0 \rightarrow K^{*0} \tau^+ \tau^-$


- Persistent tensions seen in FCNC decays $b \rightarrow s \ \ell^+ \ell^-$ w.r.t. SM / QCD, e.g. $B^0 \rightarrow K^{*0} \ \mu^+ \mu^-$, $B^0 \rightarrow K^{*0} \ e^+ e^-$
- A challenging channel: $B^0 \rightarrow K^{*0}$ $\tau^+ \tau^-$
- At baseline Tera Z luminosity, 10³ events of reconstructed signal. Angular analysis possible.
- Makes use of partial reconstruction technique to solve the kinematics of the decay. Sensitivity relies on vertexing performance (crucial)
- Another interesting and more challenging mode is $B_s \rightarrow \tau^+ \tau^-$
- Also FCNC in Z decays: Z → μe, μτ, eτ

Backgrounds (pink) and (red), signal in green. Conditions: baseline luminosity, SM calculations of signal and background BF, vertexing and tracking performance as ILD detector.

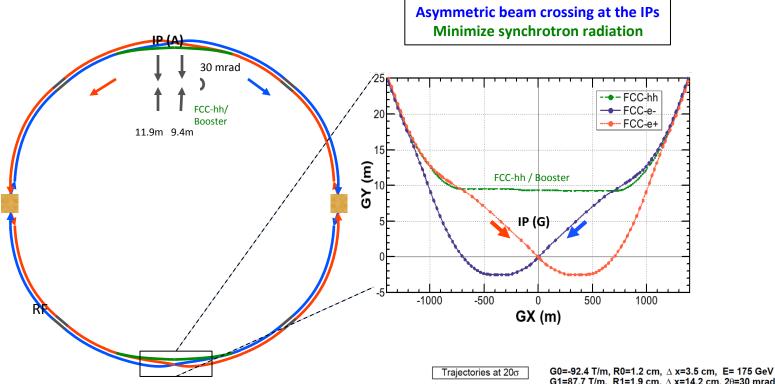

BSM Physics with TeraZ

- Search for sterile neutrinos in Z decays: Number of events depends on mixing between N and v, and m_{N}

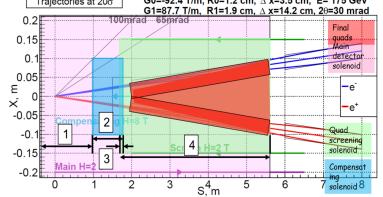
 Search for axions in Z decays: Axion Like Particles (ALPS) appear in several extensions of the SM

For Tera Z
$${\rm BR}[Z o \gamma a(\gamma \gamma)] \lesssim 3 \times 10^{-9}$$

[current LEP limit $\lesssim 5 \times 10^{-6}$]



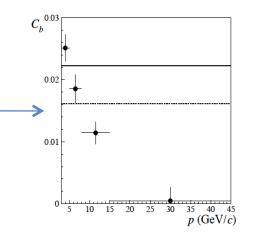
Conclusions


- The efforts of the past 2-3 years have shown that FCC is not just a repetition of LEP with huge statistics: the considerable physics potential has required, and will require new strategies, new solutions and a lot of interesting work for experiment and theory.
- •The prize is a gain of 1 2 orders of magnitude in precision for observables in the Z, W, Higgs, top sector: a change of scenario for eletroweak physics
- •Extend considerably the explored territory for new physics (direct and indirect)

Backup slides

FCC-ee baseline layout

- Asymmetric optics with beam crossing angle of 30 mrad
- IP displaced by about 9.4 m wrt proton beam line
- Maximum magnetic field 2T (compensation)
- Beam pipe radius 15 mm
- Last quadrupole L* =2.2 m
- Detector has to "stay above" the 100 mrad line



A_{FB}^{bb} : from LEP to FCC-ee

LEP combination dominated by statistics, projection for FCC-ee considers conservative reduction of various uncertainty components

	∆AFB(b)		
STATISTICS	0.00156	 	0.00002
UNCORRELATED SYSTEMATIC	0.00061	 -> Mos	st of this depends on stat.
QCD CORRECTION	0.00030	 >	Can be reduced with
LIGHT QUARK FRAGMENTATION	0.00013		improved calculations
SEMILEPTONIC DECAYS MODELLING	0.00013		and proper choices of analysis methods (e.g.
CHARM FRAGMENTATION	0.00006		measure the asymmetry
BOTTOM FRAGMENTATION	0.00003		as a function of jet
TOTAL SYSTEMATIC ERROR	0.00073		parameters, etc.)

Simple method to reduce QCD corrections for lepton analysis: raise cut un lepton momentum, as statistics is no longer dominant

Improved measurements also for the charm sector: A_{FB}^{cc}

Precisions on coupling ratio factors, A_f

$$\mathcal{A}_e = \frac{2g_{Ve}g_{Ae}}{(g_{Ve})^2 + (g_{Ae})^2} = \frac{2g_{Ve}/g_{Ae}}{1 + (g_{Ve}/g_{Ae})^2}$$

	•	Systematic uncertainty	improver	ment w.	r.t. LEP
\mathcal{A}_{e}	$5. imes 10^{-5}$	$1. \times 10^{-4}$		50	
${\cal A}_{\mu}$	$2.5 imes 10^{-5}$	$1.5 imes 10^{-4}$		30	
$egin{array}{llllllllllllllllllllllllllllllllllll$	$4. \times 10^{-5}$	$3. imes 10^{-4}$		15	
\mathcal{A}_b	2×10^{-4}	$30 imes 10^{-4}$		5	
\mathcal{A}_{c}	$3 imes 10^{-4}$	$80 imes 10^{-4}$		4	
$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$		100	
$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	$6.6 imes 10^{-6}$		75	

Relative precisions, but for $\text{sin}^2\theta_{\text{eff}}$

- $R_{l} = \Gamma_{l}/\Gamma_{had} = \sigma_{l}/\sigma_{had}$ is a robust measurement, necessary input for a precise measurement of lepton couplings (and $\alpha_{s}(m_{Z}^{2})$)
- Exploiting FCC-ee potential requires an accurate control of acceptance, particularly for the leptons
 - acceptance uncertainties were sub-dominant at LEP, but need to be reduced by a factor \approx 5 to match precision goal on R_I of 5 10⁻⁵
 - knowledge of boundaries, mechanical precisions: <u>need to</u> <u>exploit 40 years of improvements in technology</u>, <u>need to use</u> <u>clever selections (at LEP was necessary only for luminosity)</u>
 - fiducial acceptance is asymmetric in azimuth at FCC-ee because of 30 mrad cross angle → boost in trasverse direction β_x = tg(α/2) ≈ 0.015, however can measure φ* and cos(θ*) event by event for dileptons !

Measurement of R_b : double tagging

Divide event in two hemispheres according to thrust direction

- F₁ fraction of single tag
- $\bullet F_2$ fraction of double tag

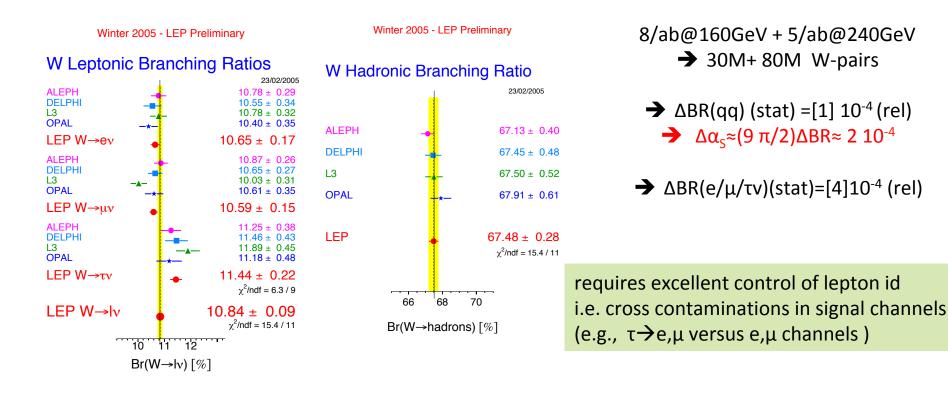
$$F_{1} = R_{b}(\varepsilon_{b} - \varepsilon_{uds}) + R_{c}(\varepsilon_{c} - \varepsilon_{uds}) + \varepsilon_{uds}$$
$$F_{2} = R_{b}(C_{b}\varepsilon_{b}^{2} - \varepsilon_{uds}^{2}) + R_{c}(\varepsilon_{c}^{2} - \varepsilon_{uds}^{2}) + \varepsilon_{uds}^{2}$$

LHC detectors and current taggers can reach three times b tagging efficiency at same suppression of charm and uds, in a more harsh environment \rightarrow sizeable improvement possible at FCC-ee

- statistical uncertainty coming from double tag sample
- systematic uncertainty from hemisphere correlations becomes dominating

Efficient and pure secondary vertex finding will be important to study gluon splitting and nasty sources of correlations (e.g. momentum correlations) → keep b-tag efficiency flat in momentum

 $\mathbf{R}_{b} \approx \frac{C_{b} \mathbf{F}_{1}}{\mathbf{F}_{2}}$


FCC-ee projections conservatively consider reduction of uncertainty on hemisphere correlations from ≈0.1% (LEP) to ≈0.03%

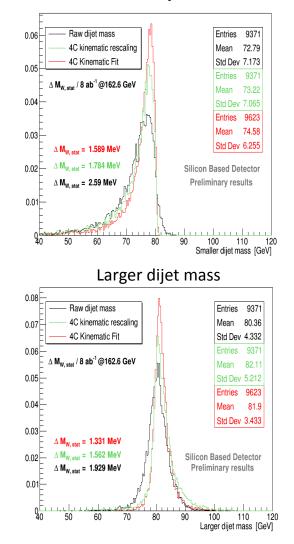
Precisions on normalized partial widths $R_{\rm f} = \sigma_{\rm f} / \sigma_{\rm had}$

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
$R_{\mu}\left(R_{\ell}\right)$	10^{-6}	5×10^{-5}	20
$R_{ au}$	$1.5 imes 10^{-6}$	10^{-4}	20
$R_{ m e}$	$1.5 imes 10^{-6}$	$3 imes 10^{-4}$	20
$R_{ m b}$	5×10^{-5}	3×10^{-4}	10
$R_{ m c}$	$1.5 imes 10^{-4}$	$15 imes 10^{-4}$	10

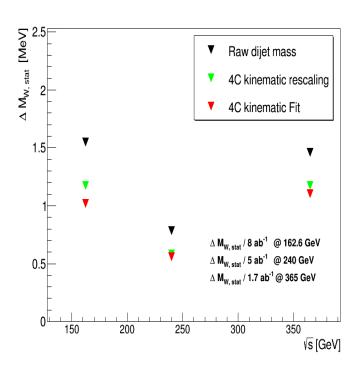
Relative precisions

W decay Branching Fractions

lepton universality test at 2% level
tau BR 2.8 σ larger than e/μ
→ FCCee @ 4 10⁻⁴ level


quark/lepton universality at 0.6%

→ FCCee @ 10⁻⁴ level


Flavor tagging \rightarrow W coupling to c & b-quarks (V_{cs}, V_{cb} CKM elements)

W mass from di-jet invariant mass (standard at LEP)

- Work in progress, started with the 4-quark channel, exploring resolution and kinematic fits (knowledge of beam energy crucial here, too !)
- Statistical uncertainty at the ≈ 1 MeV level
- Need to investigate how statistics can help in reducing LEP systematics (e.g. fragmentation, jet mass)
- Best result will be provided by the lvqq channel (no color reconnection)

Smaller dijet mass

Marina Béguin

Statistical uncertainties with various kinematic fit option, as a function of the centre-of-mass