

OMEGA ReadOut ASICs for High Granularity Calorimeters

CepC Workshop, Univ Roma III, Italy

Stéphane Callier on behalf of OMEGA microelectronics group

Ecole Polytechnique CNRS/IN2P3, Palaiseau (France)

Organization for Micro-Electronics desiGn and Applications

Omega microelectronics lab

- Mutualized ASIC design team created in 2006, UMS in 2013
- 11 research engineers (3 IR0, 1 IR1, 5 IR2, 1 IE2, 2 AI)
- Importance of critical mass for more and more complex circuits
- Cross-fertilization between projects
- Projets selection by IN2P3 management
- Technology transfer via startup WEEROC

ROC chips - J-PARC - March 2018

Evolution of calorimetry

- 3D calorimetry : eta, phi, Energy
- 4D calorimetry : x,y,z,E
- 5D calorimetry : x,y,z,E,t
 - High granularity=> Millions of channels = > Low power !
 - Power pulsing ~1% for ILC
 - Low power + C02 cooling for HL-LHC
 - Energy measurement : Large dynamic range
 - MIP sensitivity => low noise (~0.1 fC)
 - Up to thousands of MIPs (~10 pC)
 - Timing information
 - Nice addition for ILC for PID : few ns is enough
 - Crucial for HL-LHC : pileup mitigation, need few tens of ps
 - Embedded electronics vs data out
 - Daisy chain and low power busses for ILC
 - High speed e/optical links for HL-LHC
 - Radiation levels
 - Negligible at ILC
 - Daunting at HL-LHC : >100 Mrad 1^E16N

ILD

電磁カロリメータ(ECAL)

Electromagnetic Calorimeter = 100 Millions Channels (SiW) or 14 Millions (Sci)

崩壊点検出器(VTX)

ソレノイド[3.5~4T]

TPC

シリコン飛跡検出器

ターンヨーク

ハドロンカロリメータ(HCAL)

Hadronic Calorimeter = 8 Millions (Analog) or 70 Millions (semi-Digital)

CALICE technological prototypes

• R&D on imaging calorimetry

LICO

- Particle Flow Algorithms
- Electronics crucial (low noise, ultra low power, fully integrated, large dynamic range, zero suppress)
- Several innovative features (power pulsing, SiPM...)
- Validation of technological prototypes
- Common R/O features
- Worldwide collaboration

From 2nd generation...

callier@omega.in2p3.fr

... To 3rd generation

3rd generation chips for ILD

- Independent channels (zero suppress)
 - Huge change in digital part !!
 - Digital part power consumption and size (+30 to 50%)
- □ I2C link (@IPNL) for Slow Control parameters and triple voting
 - configuration broadcasting
 - geographical addressing
- PLL provides the Fast Clock (mainly used for digitization) from the Slow Clock
 - No Fast Clock to be provided to the ASICs !

□ HARDROC3: 1st of the 3rd generation chip to be submitted

But all ILC R&D stopped since 2016, waiting for ILC decision

ega

SKIROC2 readout ASIC

- 64-channel Silicon Kalorimeter Integrated Read-Out Chip
 - Autotrigger @ ½ MIP = 2 fC
 - Charge measurement 15 bits in two gains
 - 16-deep Analog memory
 - Low power 25µW/Ch with power pulsing
 - Embedded readout
 - SiGe 350 nm, produced in 2010

S/N > 9

PA Gain = 6 pF

http://omega.in2p3.fr

callier@omega.in2p3.fr

SKIROC2A Linearity

HG PA Gain @ 6pF (ILC request) LG

SKIROC2A : histogram

PA Gain @ 6pF

4095

Conv2 max

307

Conv2 min

229

Conv2 mean 268,35

Conv2 sigma

23,7005

1

S/N > 10

PA Gain @ 1.2pF

http://omega.in2p3.fr

callier@omega.in2p3.fr

POWER PULSING in SK2

- **Requirement:**
 - **Δ** 25 μW/ch with 0.5% duty cycle
 - □ 500 µA for the entire chip

Power pulsing:

- □ Bandgap + ref Voltages + master I: switched ON/OFF
- Shut down bias currents with vdd always ON
- SK2 power consumption measurement: ■ 123 mA x 3.3V \approx 40 mW => 0.6 mW/ch
- **4 Power pulsing lines** : analog, conversion, dac, digital
- Each chip can be forced on/off by slow control

Measurements		
Acquisition	88 mA , 290 mW	Duty Cycle =0.5%, 1.45 mW
Conversion	27.3 mA, 90 mW	Duty Cycle =0.25%, 0.225 mW
Readout	8.0 mA, 26.4 mW	Duty Cycle =0.25%, 0.066 mW
Skiroc2 power consumption with Power pulsing: 1.7 mW ie 27 μ W/ch		

- 25 mm² Si pads 300 µm thick
- 4 wafers per ASU 18x18 cm
- Readout 16 SKIROC2 chips 64ch
- Chip on board or BGA package
- Daisy-chain readout
- MIP/noise ~18

https://agenda.linearcollider.org/event/7014/contributions/34685/

CepC Meeting @ Roma Uni 3 - 2018/05/25

callier@omega.in2p3.fr

 0.03386 ± 0.00258 0.9411± 0.0165 $\textbf{350.9} \pm \textbf{0.1}$ $\textbf{420} \pm \textbf{1.2}$ $\textbf{486} \pm \textbf{0.4}$ $\textbf{5.04} \pm \textbf{0.37}$ $[c_1 \cdot L(\mathbf{x}_{1\text{MIP}}) + c_2 \cdot L \otimes L(\mathbf{x}_{2\text{MIP}}) + c_3 \cdot L \otimes L \otimes L(\mathbf{x}_{3\text{MIP}})] \otimes G$ borren warman and the second dealer and the second 600 650 700 80 100 120 Z (HAPh) 60 40 20 Shower w. Beam @ 1Gev + W enclosed

mega

19024

391.6

69.97

241.3 / 199

 225.7 ± 13.7

 0.9375 ± 0.0664

Issues (system issues)

- mega
- Noise, crosstalk, « square events » « monster events »
- Retriggering, digital noise
- Connectors and power supplies

AHCAL/ScECAL : SiPM readout

Scintillating tiles and SiPM

- Pioneered by DESY (EUDET/AIDA)
- Chip embedded in detector : **IOW POWER**
- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - Variant of skiroc
 - 36 channels autotrigger 15bit readout
 - Energy measurement : 15 bits in 2 gains
 - Autotrigger down to ½ p.e. (80 fC)
 - Time measurement to ~1 ns
 - Power dissipation : 25µW/ch (power pulsed)

mega

$(0.36m)^2$ Tiles + SiPM + SPIROC (144ch)

SPIROC : One channel schematic

Omega

SPIROC : System On Chip

SPIROC2E : Auto-trigger

SPIROC2 : Linearity of Charge Measurement

Single-Photon Peaks I

Mathias Reinecke | HCAL main meeting - Hamburg | Dec. 10th, 2009 | Page 21

- 2.5 A switched at 5 Hz
- 150 µs settling time

C. de La Taille Front-End elecectronics TIPP 2017

- > 24 of 39 detector modules completed. All modules expected end March.
- Detector modules are tested with LED (ET), cosmics and at DESY electron testbeam facility (16 modules already tested). Calice 1 Raw Hitmap Calice 1 Raw Hitmap

RPC sDHCAL : HARDROC3

mega 64 channels with current 64 channels 🚽 H o ld Read **Multiplex** Gain correction Charge output SLOW Shaper 8 bits/channel Trigger less mode (auto trigger 15fC Variable Gain PA **Bipolar FAST** Latch Chj trig0 D 0 Shaper 0 Vth0 RS or64 0 <i Ctest ch<j: Gain correction (max factor 2) Vth0: 10fC to 100fC Discri. **+** 2 p F Slow Ctrl m ask0 trigger0<j> **↓**Read Chj_trig1 **Bipolar FAST** 3 shapers + 3 discriminators (encoded Ctest Chj Latch Vth1 RS Shaper 1 nor64 1 <j in 2 bits for readout) Discri mask1 trigger1<j> Vth1: 100fC to 1pC Read Chj_trig2 **Bipolar FAST** Latch **I2C** link with triple voting for Slow Vth2 Shaper 2 RS nor642 <j> **Control Parameters** Vth2: 1pC to10pC mask2 trigger2<j> trigger0 encod0<j> trigger1 64 Independent channels with zero ENCODER RAM trigger2 encod1<i> 8 events 12 Bit counter BCID trigger0<j> trigr0<j> valid_trig WR_MEM<i> (12+2) bits Max 8 events / channel with 12-b trigger1<j> trigr1<j> valid_trig1 1 Digital Memory/ch trigger2<j> trigr2<j> valid_trig2 Integrated clock generator: PLL DIGITAL PART Common to the 64 channels All bias and reference voltage Vth2 DAC2 10 bits internal (with power pulsing) Ň Vth1 No decoupling capacitances required on bias DAC1 nor64_0<0:63> HARDROC3B **OR64** 10 bits and references voltages nor64 1<0:63> DACO Vth0 nor64_2<0:63> 10 bits

callier@omega.in2p

Token Ring ReadOut

preamplifiers

up to 50pC)

suppress

time stamping

HR3: Analog linearity

Fast shaper outputs (mV) vs Qinj (fC)

callier@omega.in2p3.fr

Dynamic range: 15fC

50 pC

_

Gain correction / Scurves

Zero suppress: Memory mapping

ega

RPC sDHCAL calorimeter : HARDROC

- Semi-digital Hadronic calorimeter (SDHCAL) technological proto with up to 50 layers built in 2010-2011.
- Scalable readout scheme successfully tested
- 10 fC threshold on 1 m²
- Complete system in TB with 460 000 channels, AUTOTRIGGER mode and power pulsing (5%)

Micromegas sDHCAL : MICROROC

64 channels for µMegas (sDHCAL)

- Very similar to HARDROC except : Input (charge) preamp Slower shapers (100-150 ns) HV Spark protections
- Noise: 0.2fC (Cd=80 pF). Auto trigger on 1fC up to 500fC
- Delta Pulsed power: **10 µW/ch** (0.5 % duty cycle)
- A Micromegas prototypes of 1x1 m2 were <u>constructed</u> in 2011-2012 and <u>tested</u> in particle beams inside the DHCAL steel structure in 2012

Very good performance of the electronics and detector (Threshold set to 1fC)

1*m*² *Micromegas detector Microroc : 10 000 channels*

HGCAL TDR was submitted in Nov. 2017 R&D continues; construction starts in 2020

CERN

CMS HGCAL Detector overview

- Stringent requirements for Front-End Electronics
 - Low power (< 10 mW), [and dual polarity !]</p>
 - Low noise (< 2000 e-) (MIP ~ 1-4 fC with S/N>2)
 - High radiation (200 Mrad, 10^E16 N)
 - High dynamic range (0,2fC to 10pC)
 - Fast shaping time (<20ns to avoid pile up)
 - Timing information (tens of ps)
 - System on chip (digitization, processing : zero suppression, trigger sum on chip)
 - High speed readout (5-10 Gb/s)

CepC Meeting @ Roma Uni 3 - 2018/05/25

ADC counts in Laye

CMS Preli

Fermilab

4 ASICs submitted in the past two years

SKIROC2_CMS

- SiGe 350 nm
- Submitted in January 2016
- Dedicated to test beam
- 1st test vehicle: TV1
 - CMOS 130 nm
 - Submitted in May 2016, received in august 2016
 - Dedicated to preamplifier studies
- 2nd test vehicle: **TV2**
 - CMOS 130 nm
 - Submitted in December 2016, received in may 2017
 - Dedicated to technical proposal' analog channel study

HGROCv1

- CMOS 130 nm
- Submitted in July 2017, expected in October 2017
- all analog and mixed blocks; large part, but not complete, digital blocks

SKIROC2_CMS for HGCAL

- new SKIROC2 for CMS
 - Optimized version for CMS testbeam, pin to pin compatible
 - Dual polarity charge preamplifier
 - Faster shapers (25 ns instead of 200 ns)
 - 40 MHz circular analog memory, depth= 300 ns
 - TDC (TAC) for ToA and ToT, accuracy : ~50 ps
 - Submitted jan 2016 SiGe 350nm
- Tests :
 - First tests on BGA testboards
 - 4-5 boards equipped

CERN

Electron and pions signals seen In testbeam

CepC Meeting @ Roma Uni 3 - 2018/05/25

Fermilab

SCA operation

- 40 MHz circular analog memory. 13 cells in store and 2 in track
- Allows ~300 ns trigger latency

Waveforms with 1 MIP injection

- 3 fC test pulse injection ~1 MIP
- Preamp Cf = $0.5 \text{ pF Rf} = 2.5 \text{M}\Omega \text{ Cd} = 0$ - Vout = 5 mV N = 0.4 mV
- HG shaper tau = 20 ns
 - Vout = 15 mV N = 1.2 mV =>0.25 fC
- Fast shaper tau = 5 ns
 - Vout = 12 mV N = 1.4 mV =>0.35 fC

Reconstructed waveforms CSA config

- Charge sensitive configuration : Rf = 2.5 M Ω Cf = 0.5pF
- Hi Gain / Lo Gain positive/negative configurations

Figure 29: Shaper response for different tau, Low-gain, positive polarity

Figure 30: Shaper response for different tau, High-gain, positive polarity

Figure 32: Shaper response for different tau, High-gain, negative polarity

CepC Meeting @ Roma Uni 3 - 2018/05/25

<mark>Imperial College</mark> London

Borg ICL

J.

0
Linearity

• Linearity < 1%,

temperature sensitivity ~0.1%/K

Figure 3: High-gain transfer function for different T positive polarity $\tau = 40n_S$

CepC Meeting @ Roma Uni 3 - 2018/05/25

<mark>Imperial College</mark> London

Borg ICL

J.

0

Noise vs capacitance

۲

- Linear fit of series noise gives $e_n = 1.0 \text{ nV}/\sqrt{Hz}$
- Parasitic capacitance : Ca = 34 pF (10 pF chip 20 pF board)

Figure 8: High-gain noise vs Cd, positive polarity, $\tau = 40$ ns. Least-squares linear fit: $y = 0.17367 + 50.718 \times 10^{-3} x$ (fC, pF), y = 0 yields C = 34 pF.

Split

U.

D. Coko, T. Sculac

 \odot

nega

Waveforms : ISA configuration

- Current sensitive configuration : $Rf = 20 k\Omega$ Cf = 0.5pF
- Hi Gain / Lo Gain positive/negative

Figure 33: Shaper response for different tau, Low-gain, positive polarity

mega

Figure 34: Shaper response for different tau, High-gain, positive polarity

τ=20 hs →

 τ =30 hs

 τ =40 ns

τ=50 ns

τ=60 ns

Time over Threshold (ToT)

- TOT measured in current sensitive config : Rf=20k Cf=300f
- ADC range : 0-500 fC TOT above
- energy reconstruction around 500 fC, calibration, pedestal evaluation

CepC Meeting @ Roma Uni 3 - 2018/05/25

Imperial College London

Borg ICL

J.

0

()mega

- A constant concern in calorimetry
 - Coherent noise extracted by comparing direct and alternate sums on n channels (n=64) : DS = ∑ ped[i] ; AS = ∑ (-1)ⁱ ped[i]
 - Incoherent noise IN = rms(AS) / \sqrt{n}
 - Coherent noise : $CN = \sqrt{var(DS) var(AS)} / n$
- Need to show that CN / IN ~ 10% can be obtained at system level

C. de La Taille Front-End electronics TIPP 2017

Imperial College London

ICI

Borg

Ч.

 \odot

Time of arrival (ToA)

- TOA measured with internal TDC and corrected for time walk
- Constant term = 50 ps
- Noise term = 10 ns / Q(fC) (~4 ns/Q expected)
- What can be obtained at system level ?

Imperial College London

J. Borg ICL

0

HGROC for SiPM

mega

CepC Meeting @ Roma Uni 3 - 2018/05/25

Testbeam setup(s)

- Boards with SKIROC2 used in 2016 [UCSB, FNAL, UM]
- Hexaboards with SK2_CMS in 2017 [CERN]

ADC counts in Layer8

HGCAL readout ASIC

HGROCv1 features:

- 32 channels
- Dual polarity
- TOT with 2 variants:
 - Low power @ Imperial
 - DLL @ OMEGA (CERN based)
- TOA (CEA)
- 11-bit SAR ADC (OMEGA)
- Simplified Trigger path
 - Only sum by 4
 - No 0-suppress (4+4 log)
- Data readout to be defined
- SC with triple voting (shift register like SK2-CMS)
- Many digital block with simplified architecture
- Services
 - Bandgap from CERN
 - PLL from CEA-IRFU
 - 10b DAC from TV2

HGROC block diagram vs HGROCv1

HGROCv1 features:

- 32 channels
- Dual polarity
- TOT with 2 variants:
 - Low power @ Imperial
 - DLL @ OMEGA (CERN based)
- TOA (CEA)
- 11-bit SAR ADC (OMEGA)
- Simplified Trigger path
 - Only sum by 4
 - No 0-suppress (4+4 log)
- Data readout to be defined
- SC with triple voting (shift register like SK2-CMS)
- Many digital block with simplified architecture
- Services
 - Bandgap from CERN
 - PLL from CEA-IRFU
 - 10b DAC from TV2

LSB

VFE architectural issues

- key issues to be studied :
 - Noise
 - Resolution
 - Stability
 - Linearity
 - Accuracy
 - Calibration
 - crosstalk
 - Radiation
 - Timing

ADC

Systematic effects

100 fC (~30

MIP)

TOT

Charge

(fC)

Analog and Mixed channel

- Preamplifier gain adjustable on 4bit
- New shaper without SK
 - In a next version, with SK and tunable shaping time and gain
- Decay time given by R_{f_pa}
 - 25K
 - 100K
- New TOT architecture
 - Gain adjustable by SC
 - Undershoot → dead time
 - In a next version, find a way to remove/reduce it (dynamic reset)
- New TOA fast discriminator
 - In a next version, higher preamp bias current and fast output to improve the time measurement
- Local 5bit DAC to adjust the Vrefs and the thresholds
- Local input current DAC to compensate the leakage
- Internal calibration circuit
 - Low range up to 600 fC
 - High range up to 12 pC

Power dissipation @ 1,5V supply

- Vdda (preamp): 1,6mA
- Vdd (tot): 160µA
- Vdd(shaper, toa): 1,1mA

Waveforms and linearity on scope

New mixed-signal circuits

- ADC SAR
 - Inspired from Krakow design, 11 bit
- 2 TDCs for TOT
 - IC design, 50ps/200ns, based on a ring oscillator
 - OMEGA design, 50ps/400ns, based on a global DLL running at 640MHz
- TDC for TOA
 - CEA-IRFU design
 - 10/11 bit
- PLL
 - CEA-IRFU design
 - 40MHz input clock
 - 1,28GHz running frequency

Serializer and Elink for trigger path

The chip integrates 2 elink transmitter to handle the 64 bits from the trigger path

- 4 channels are encoded into 8 bits (with 4+4 encoding)
- 2 variants (fully digital or mixed \rightarrow way the last mux is done)
- Possibility to readout a known frame (set by SC)
- Default is 1,28 Gb/s (640 Mb/s possible)

Main specifications:

- Data rate 1,28 Gb/s (internally 640M DDR)
- Compatible with LpGBT protocol
- Programmable Pre-emphasis (based on Paulo Moreira scheme)
- Synchronization pattern on request (in place of trigger data)

Termination load	100 9
HGROCv1 test results - April	17, 2018

eqa

Specification description	Value	
Vcm (common voltage)	0,6 V	
Vdiff (differential voltage)	100 to 200 mV	
Pre-emphasis current	0,5 to 4 mA	
Termination load	100 Ω	

E-links

- Data path running at 320MHz
 - No difficulty to send out data from the SRAM
- Trigger path running at 1,28GHz
 - For now, I only look at the eye diagram and Johan provides the plot of error rate vs sampling delay

55

nega

Timing at High-Luminosity LHC

• Pileup mitigation with fine time information (~25 ps)

© G. tully CERN seminar on timing /https://indico.cern.ch/event/633341/

HGCAL timing performance

- CMS HGCAL testbeam measurements
- Jitter : j ~1 ns / S/N
 - But S and N depend on BW...
 - Parts come from detector and from electronics

mega

C. de La Taille Front-End electronics TIPP 2017

Results : CMS pin diodes caracterization

- Measured jitter In testbeam [A. Martelli et al.] :
 - jitter ~ 1 ns/Q(fC) (+) 20 ps

Timing Resolution (Mean Silicon - MCP) vs Mean Sensor Effective Signal

mega

18 20 Time [ns]

58

Time walk and Time jitter Omega

Examples

- CMS HGCAL : PIN diode thickness 300 µm A=25 mm²
 - $C_d = 8 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 420 \text{ ps/Q(fC)}$
 - $1 \text{ MIP} = 3.8 \text{ fC} \Rightarrow \sigma = 110 \text{ ps/#MIP}$ (~200 ps measured)
- NA62 tracker : PIN diode thickness 300 µm A=0.09 mm²
 - $C_d = 0.1 \text{ pF } e_n = 11 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 60 \text{ ps/Q(fC)}$
 - $1 \text{ MIP} = 3 \text{ fC} => \sigma = 20 \text{ ps/#MIP}$ (~60 ps measured)
- ATLAS HGTD : LGAD diode thickness 50 µm A= 2 mm² G = 10
 - $C_d = 2 \text{ pF } e_n = 2 \text{ nV}/\sqrt{\text{Hz}} t_d = 0.5 \text{ ns} \sigma = 50 \text{ ps/Q(fC)}$
 - 1 MIP = 5 fC (G=10) => σ = 10 ps/#MIP (~30 ps measured)
- SiPM G = $1^{E}6$
 - $C_d = 300 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 100 \text{ ps} \sigma = 3 \text{ ns/Q(fC)}$
 - 1 pe = 160 fC => σ = 20 ps/#pe (~60 ps measured)

Summary

- OMEGA has long history in FEE design
 - Started with ILC/Calice now lead by CMS/HGCAL
- Imaging calorimeters ramping up !
 - Require highly integrated R/O electronics : System On Chip
 - Low power, low noise, high speed, large dynamic range
 - Timing capability down to a few tens of ps
 - Lots of system issues
 - <u>CepC requirements for FEE are similar to CMS HGCAL specs</u>
- Timing performance dominated by sensor characteristics
 - Capacitance, duration, MIP charge
- Work getting organized towards 10 ps (1 ps ?) timing

OMEGA ILC chip

OMEGA microelectronics group

Ecole Polytechnique CNRS/IN2P3 , Palaiseau (France)

Organization for Micro-Electronics desiGn and Applications

Backup Slides

Organization for Micro-Electronics desiGn and Applications

POWER PULSING in SK2

- **Requirement:**
 - **Δ** 25 μW/ch with 0.5% duty cycle
 - □ 500 µA for the entire chip

Power pulsing:

- Bandgap + ref Voltages + master I: switched ON/OFF
- Shut down bias currents with vdd always ON
- SK2 power consumption measurement:
 123 mA x 3.3V ≈ 40 mW => 0.6 mW/ch
- **4 Power pulsing lines** : analog, conversion, dac, digital
- Each chip can be forced on/off by slow control

Measurements			
Acquisition	88 mA , 290 mW	Duty Cycle =0.5%, 1.45 mW	
Conversion	27.3 mA, 90 mW	Duty Cycle =0.25%, 0.225 mW	
Readout	8.0 mA, 26.4 mW	Duty Cycle =0.25%, 0.066 mW	
Skiroc2 power consumption with Power pulsing: 1.7 mW ie 27 μ W/ch			

1st test vehicle: TV1

- Analog blocks for preamp characterization:
 - 6 positive & 6 negative input preamps
 - Use different transistor size ant type (lvt, typ, hvt)
 - 60dB and 90 dB OL gain architecture
 - Variable Rf and Cf: charge sensitive or current sensitive
 - CRRC shapers: HG and LG, 5 to 75 ns shaping time, => noise studies
 - 1 baseline channel from TP (CERN schematic)
 - 4 discriminators for TOT studies
 - Digital part for noise coupling tests

TV1 test results

- "90dB" preamps, for both polarities, achieve the best performances in terms of open loop gain, linearity, speed and noise
- Issues found
 - Large parasitic capacitance (Cpa = 40pF)
 - Stability issues with R2R shapers
 - Poor modelization of Crtmom capacitors

2nd test vehicle: TV2

()mega

- Negative input preamp
 - High OL gain (90dB)
 - Variable Cf: 0,1fF 1,5pF
 - Two selectable Rf: 24K & 1M
 - Cf_comp for high gain setting
 - Different versions: baseline, low parasitics cap (custom layout)
- Baseline shapers
 - Tunable bias
 - Tunable miller comp
 - Global 10b DAC and 5b DAC in order to tune the Reference voltages
- 11b 40 MHz SAR ADC based on Krakow design
- ToT: No TDC but discri output on a PAD
- ToA: not implemented (high speed TDC still not available)
- 32x512 SRAM (CERN)

Different versions:

- Preamp: baseline, low parasitics cap (custom layout)
- 11b ADC: asynchronous and synchronous ADC, with and without bootstrap

TV2: ADC SAR

- 11-bit ADC SAR (MSB signal sign + 10 successive comparisons)
- Designed for 20 MSamples/second
- Design of 11-bit SAR ADC
 - Differential input signal
 - Based on a capacitive DAC architecture (« 614 » :Split 6b/4b DAC)
 - Based on a asynchronous SAR logic and tunable settling delay
- Power consumption ~3mW @ 20MHz (~50% capa array;~50% digital)
- 4 ADC SAR architectures in TV2 (w and w/o bootstrap; asynchronous/synchronous) to be tested sample clock

nega

TV2: L1 Buffer SRAM

L1 Buffer in TV2 (TSMC 130 nm):

- □ 512w x 32 bits
- □ Use CERN memory generator (beta version)
- □ 1 buffer / channel (in TV2)

	Area	Power	Processing
	mm²	mW / ch	Time (ns)
RAM 32b x 512w	0,35	~ 4	R @ 1 MHz W @ 40 MHz

	energy	energy	energy	energy	leakage
	READ*	WRITE*	R&W*	NOP	
	uW/MHz	uW/MHz	uW/MHz	uW/MHz	uW
WC	51.2	71.3	130.0	20.2	30.55
TC	65.7	85.6	148.4	16.1	3.75
BC	86.5	108.2	179.9	24.9	5.06
TL	70.5	93.3	161.9	24.7	90.53
LT	81.5	105.5	187.4	32.6	1.82
ML	98.9	128.4	223.1	33.6	283.22

Measured <u>3mW/SRAM</u> with only 12bits toggling (data toggling @10MHz, writing @40MHz, reading @1MHz) is in agreement with expectations

TV2: SAR ADC tests

- Maximum sampling frequency: 10MHz ٠
- DC characterization: INL, DNL, capa network, noise •
- Many parameters to be explored: delay, reference voltages,
- Just starting: lots of work ahead (SINAD, ENOB, SNR ...) •

TV2: Charge linearity

Good agreement between simulation and measurement

- Linear up to 90fC
- But ADC brings a non linearity, likely due to mismatches of its capa network (half range)
- Strong DC dependency to the Temp
 - DC coupled channel, gain 15
 - Input preamp 1mV/°C

Good performance of TOT but after 3pC, 1pC in simulation => have to be understand

TV2: Noise measurements

- Spec 2000 electrons with 50pF detector capacitance
- OK without ADC and running RAM
- Discrepancy between simulated and theoretical/measured values

Timing optimization : common view

• Jitter due to electronics noise:

$$\sigma_t^{J} = \frac{N}{\frac{dV}{dt}}$$

- also presented as j = tr / (S/N)
- dV/dt prop to BW, N prop to $\sqrt{BW} =>$ jitter prop to $1/\sqrt{BW}$
- \Rightarrow « the faster the amplifier the better the jitter ? »
- \Rightarrow « High speed preamps need to be low impedance (50 Ω or less) »

NB : $tr = t_{10-90\%} = 2.2 \text{ tau.}$ $f_{-3dB} = 1/2\pi tau = 0.35 / t_{10-90}$ $f_{-3dB} = 1 \text{ GHz} <-> t_{10-90\%} = 300 \text{ ps}$

Signal : detector current

- <u>PN diode</u> w =200µm
- Very short rise time : tr~10ps
- Relatively long «drift time» : td~2ns

- <u>SiPM detector (10pe-)</u>
- very short rise time : tr~10 ps
- Short duration : td~100ps),

© Harmut Sadrozinski (Santa Cruz) "the beautiful risetime of the detector is spoilt by the electronics"

C. de La Taille Front-End elecectronics TIPP 2017

voltage vs current sensitive

 Example : 10 fC – 1 ns signal from 1-10-100 pF sensors into 50 Ω (current) or 50k (voltage) preamp

Examples of pulse shapes

- SiPM pulse : Q=160 fC, C_d=100 pF, L=0-10 nH, R_S=5-50 Ω
- Sensitivity to parasitic inductance
- Choice of R_s : decay time, stability
- Small R_s not necessarily the fastest
- Convolve with current shape... (here delta)

C. de La Taille Front-End elecectronics TIPP 2017

nega

1-10 nH

 \mathcal{M}

Detector impedance and input voltage

1 GHz

109

 10^{8}

- 1 GHz, Cd=few tens of pF, input signal width <1ns •
- Cd>1 pF, Zs@1GHz dominated by Cd
- Rise time: tr= td when td << $R_S C_d$ and tr= $R_S C_d$ • when td>> $R_S C_d$

1 GHz

10¹⁰

High speed amplifiers

- Response to very short pulse
- Broadband
 - Zin=Rs (50 Ohm)
 - Vin = Q/Cin
 - $V_{OUT} = -G_m R_F \frac{Q_{IN}}{C_d}$
- Transimpedance
 - Zin ~ Zf/G ~ 1/gm

$$- \mathbf{V}_{\mathbf{OUT}} = \frac{\frac{1}{G_{\mathrm{m}}} - \mathbf{R}_{\mathrm{F}}}{1 + j\omega\frac{C_{\mathrm{d}}}{G_{\mathrm{m}}}} \mathbf{I}_{\mathrm{IN}} \approx -\mathbf{G}_{\mathrm{m}}\mathbf{R}_{\mathrm{F}}\frac{\mathbf{Q}_{\mathrm{IN}}}{\mathbf{C}_{\mathrm{d}}}$$

Same response at High Frequency

Signal and noise in Broadband amplifiers

- Signal of duration t_d, across capacitance Cd with BB amplifier of impedance R_S
- Signal scales as 1/ C_d if $R_S C_d >> t_d$ and $C_{PA} << C_d$

$$S = V_{OUT} = G \frac{Q_{IN}}{C_d}$$

- Rise time is the convolution of signal duration t_d and amplifier risetime $t_{10\mathchar`embed{PA}}$

$$t_r \approx \sqrt{t_{10-90_PA}^2 + t_d^2}$$

Noise is given by the preamp noise density e_n and bandwidth

$$N = G.e_n \sqrt{\frac{\pi}{2}} BW = \frac{G.e_n}{\sqrt{2t_{10-90_{PA}}}}$$

• Jitter is then :

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

C. de La Taille Front-End elecectronics TIPP 2017

• Optimum value: $t_{10-90 PA} = t_d$ (current duration)

$$\sigma_t^{J} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Dominated by sensor Electronics only gives e_n

- Electronics noise e_n given by input transistor transconductance g_m :
 - Typically ~1 nV/ \sqrt{Hz} at I_D = 0.5 mA

 $e_n = \sqrt{\frac{2kT}{g_m}} \approx \frac{2kT}{\sqrt{g_m}}$

- Scales with the square root of current in transistor (weak inversion)

noise spectral density

C. de La Taille Front-End elecectronics TIPP 2017

- Evaluate jitter(Q) with thickness (th)
 - At given Q, $C_d \sim 1/th$, $t_d \sim th$, expect j $\sim 1/\sqrt{th}$
 - $dV/dt = Q / C_d t_d = Cte$
 - Better jitter : longer signal, smaller BW
 - Not seen in testbeam setup because 50 Ω amplifier not optimum at low capacitance
- Jitter(MIP) even better because more charge
- But more Landau fluctuations...

CMS	100um	200um	300um	200um
	calc	calc	calc	meas
th (µm)	100	200	300	210
Cd (pF)	23	12	8	14
fC/MIP	1,3	2,6	3,8	2,7
en (nV/vHz)	1	1	1	
td (ns)	1	2	3	
jitter/Q(fC)	727	514	420	1021
jitter/MIP	568	201	109	380

- 2 mm² LGAD 50 µm thick
- SiGe discrete readout BW = 2 GHz
- Jitter measured : j = 200 ps / Q(fC)
 - − MIP = 4.6 fC at G = 10, t_d = 0.5 ns, C_d = 2 pF, e_n = 1 nV/√Hz
 - Theory : j = 50 ps/Q(fC)
- ATLAS HGTD will use 2 mm² LGADS for ~30 ps timing with G = 10-20

mega

C. de La Taille Front-End elece

- SPTR
 - FWHM ~200 ps
 - Rms ~ 80 ps

Single photon time resolution of state of the art SiPMs

M.V. Nemallapudi,¹ S. Gundacker, P. Lecoq and E. Auffray

CERN, 23 Rue de Meyrin, Geneva, 1211-CH

C. de La Taille Front-End elecectronics TIPP 2017

Going to lower SPTR

Expect ~ 20 ps/pe

Count 200

180

160

140

120

100

80

60 H

40

20

0^[]

-14

-15

-13

- NINO risetime ~1 ns
- Test with PETIROC2 (tr = 300 ps)
 - SPTR = 67 ps rms (180 ps FWHM)
- Possible effect of stray inductance
- Furhter studies in FAST framework

SPTR

histo

3465

-13.68

0.1671

 186.2 ± 5.1

 -13.65 ± 0.00

-10

Delay (ns)

0.06784 ± 0.00130

0

Entries

Std Dev

Constant

Mean

Prob

Mean

Sigma

Sigma : 67.84 ps

FWHM : 160.10 ps

-12

-11

© J. Fleury TIPP17

mega

Evolution of technologies

- More and more functions are integrated inside chips (ASICs)
- Evolution of technologies make them more and more performant but more and more complex
- Cost increases ...
 - MPW costs :
 - 350 nm : 1 k€/mm²
 - 130 nm : 2 k€/mm²
 - 65 nm : 6 k€/mm²
- Chip size also...
- CERN targets 65/130 nm
- SiGe in AIDA2020

mega

The PP-ASIC Paradigm

ALTIROC

- ALTIROC = ATLAS LGAD Timing ROC
 - 20 ps timing measurement with LGAD sensors for ATLAS HGTD
 - Jitter : j = 110 ps/Q(fC) @ Cd=2 pF
 - Test chip bondable to sensors of 1x1 mm² and 2x2 mm², submitted in dec 16 in TSMC 130n
 - High speed preamp (1 GHz) + constant fraction discriminator (20 ps)
- Will evolve to 400 ch chip
 - With internal TDC, bump bonded to sensor.
 Collaboration with SLAC

mega

HGTD architecture

C. de La Taille Front-End elecectronics TIPP 2017

mega

CE in SiGe 130nm and in TSMC 130 nm

- Broad Band amplifier CE configuration
- Same current (Ic=700 µA), same Rf=4K, vdd=1.2V
- Higher gain with SiGe but larger noise due to rbb'

nega

	CE 10pF TSMC 130 nm	CE 10pF SiGe 130nm Trans size= 20
$\frac{\text{td}=10\text{ps}}{\text{Qin}=\text{lin.td}=}$ $100\mu\text{A}.10\text{ps}=1\text{fC}$ $\lim_{\text{width}=td} \bigoplus_{n=1}^{t} C_{n} = \frac{Q_{N}}{C_{d}} = \frac{I_{N}I_{d}}{C_{d}}$	out=3.7mV tr=220ps BWa=1.6 GHz rms=1.3 mV S/N=2.8 oj=220ps/2.8=78 ps	out=8.95 mV tr=176 ps BWa= 2GHz rms=3.14mV S/N=2.85 σj=176ps/2.85=60 ps
td=1ns and tr_ampli=td CL=100fF Qin= 1µA.1ns=1fC	out=3.52mV(CL=100fF) tr=1.1ns BWa=440MHz rms=0.66mV S/N=5.3 σj=1100ps/5.3=206 ps	out=7.5mV (CL=110fF) tr=1.1 ns BWa=440MHz rms=1.4 mV S/N=5.4 σj=1.1ns/5.4=204 ps

CE in TSMC 130 nm: jitter vs tr (BW) and td

- With I source trans (0 for 2 pF or 1.8mA)
- Follower (connected to a discriminator)
- Normalization to 1 fC, square pulse.
- LGAD signa would give 6 fC/MIP

 $\underline{t_r} = \frac{\sqrt{t_r^2}_{ampli} + t_d^2}$ $\sigma_t^J = \frac{\sigma_N}{\Delta V}$ \overline{S} dt NN

POWER: 0.5mW/ mm²

CE	Cd=2pF (Id=220 μA)	Cd=20pF (Id=2.1 mA)
td=10ps Qin=lin.td= 100µA.10ps=1fC $\prod_{in} \bigoplus_{in} C_{d} = \frac{Q_{IN}}{C_{d}} = \frac{I_{IN}t_{d}}{C_{d}}$ width=td =	out = 6.9 mV out_fol=6.1 mV tr_fol=284 ps BWa=1.2 GHz rms=0.485 mV S/N=12.6 oj=284ps/12.6=23 ps	out=3.37 mV out_fol=3.1 mV tr_fol=290 ps BWa=1.2 GHz rms=1.2 mV S/N=2.6 σj=290ps/2.6=110 ps
td=1ns and tr_ampli=td CL=100fF Qin= 1µA.1ns=1fC	out=6.4 mV out_fol=5.9 mV tr_fol=1.1ns BWa=410 MHz rms=0.39 mV S/N=15 σj=1.1ns/15=73 ps	out=3.2 mV out_fol=3.05 mV tr_fol=1.1 ns BWa=440 MHz rms=0.8mV S/N=3.8 σj=1.1ns/3.8=288 ps

SKIROC2_CMS for HGCAL

Cf

.800f, 1.6p, 3.2pF

Omega

- new SKIROC2 for CMS
 - Optimized version for CMS testbeam, pin to pin compatible
 - Dual polarity charge preamplifier
 - Faster shapers (25 ns instead of 200 ns)
 - 40 MHz circular analog memory, depth= 300 ns
 - TDC (TAC) for ToA and ToT, accuracy : ~50 ps
 - Submitted jan 2016 SiGe 350nm
- Tests :
 - First tests on BGA testboards
 - 4-5 boards will be equipped

Time over Threshold (ToT)

- TOT measured in current sensitive config : Rf=20k Cf=300f
- ADC range : 0-500 fC TOT above
- energy reconstruction around 500 fC, calibration, pedestal evaluation

C. de La Taille Front-End elecectronics TIPP 2017

Imperial College • London

Borg ICL

J.

0

mega

Results : CMS pin diodes caracterization

- Measured jitter In testbeam [A. Martelli et al.] :
 - jitter ~ 1 ns/Q(fC) (+) 20 ps

Timing Resolution (Mean Silicon - MCP) vs Mean Sensor Effective Signal

mega

18 20 Time [ns]

95

PETIROC2 DESCRIPTION

Omega

- Time of Flight read-out chip with embedded TDC (25 ps bin) and ADC
- Dynamic range: 160 fC up to 400 pC
- 32 channels (negative input)
 - 32 trigger outputs
 - NOR32_chrage
 - NOR32 time
 - Charge measurement over 10 bits
 - Time measurement over 10 bits
 - One multiplexed charge output
- Common trigger threshold adjustment and 6bit-dac/channel for individual adjustment
- Variable shaping time of the charge shaper
- 32 8bit-input dac for SiPM HV adjustment
- Power consumption 6 mW/ch
- Front-end
 - Broad Band SiGe fast amplifier
 - Fast SiGe discriminator
 - 1 GHz overall bandwidth, gain = 25

AMS 0,35µm SiGe

PETIROC2A: performance

Signal and noise in Broadband amplifiers

- Signal of duration td, across capacitance Cd with BB amplifier of impedance R0
- Signal scales with 1/ Cd if R0Cd>>td and C_{PA}<<Cd

$$S = V_{OUT} = G \frac{Q_{IN}}{C_d}$$

• Signal rise time is the convolution of signal duration td and amplifier risetime t_{10-90 PA}

$$\frac{dV}{dt} == \frac{G.Q_{in}}{C_d \sqrt{t_{10-90_{PA}}^2 + t_d^2}}$$

• Noise is independent of Cd

$$N = G.e_n \sqrt{\frac{\pi}{2}}BW = G.e_n \sqrt{\frac{\pi}{2}}\frac{0.35}{t_{10-90_PA}} = \frac{G.e_n}{\sqrt{2t_{10-90_PA}}}$$

nega

(ì

C d

I in

Signal and noise on Broadband amplifiers

• Jitter is given by

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n}{\sqrt{2t_{10-90_PA}}} \frac{C_d \sqrt{t_{10-90_PA}^2 + t_d^2}}{Q_{in}} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

• Optimum value: $t_{10-90_{PA}} = t_d$ (current duration)

$$\sigma_t^{J} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Dominated by sensor Electronics only gives en

• Electronics noise en given by input transistor transconductance :

nega

Vin and Vout CE, TZ Cd=10pF td=10ps 1fC

Transient Response

Output noise CE and TZ for Cd= 10pF 100pF

Timing with waveform samplers

voltage noise Δu timing uncertainty Δt $\frac{\Delta u}{\Delta t} = \frac{U}{t_r}$ © Sebastian White TIPP2014

Optimistic for S/N and neglects noise autocorrelation

today:

optimized SNR:

next generation:

$\Lambda t -$	Δu	1
$\Delta \iota =$	\overline{U}	$\sqrt{3f_s\cdot f_{3dB}}$

Assumes zero aperture jitter

nega

U	$\Delta \boldsymbol{U}$	f_{s}	f _{3db}	Δt
100 mV	1 mV	2 GSPS	300 MHz	~10 ps
1 V	1 mV	2 GSPS	300 MHz	1 ps
1V	1 mV	10 GSPS	3 GHz	0.1 ps