

CEPC Workshop – EU edition

Hadronic Calorimeters in CALICE

D. Boumediene on behalf of the CALICE collaboration 25/05/2018

High granularity calorimeters

• Particle Flow analysis is an optimal way to reconstruct final states in e^+e^- collisions especially with τ , missing energy and jets...

- A Particle Flow optimized hadronic calorimeter:
 - Has to be compact, fit in the magnet with negligible dead zones
 - The active component must allow fine segmentation of the signal while keeping a reasonable intrinsic energy resolution
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

High granularity calorimeters

CALICE proposes Sampling hadronic calorimeters, optimised for PFlow Analysis

sDHCAL technology

Anode

Charge amplification in a RPC

Advantages of Resistive Plate Chambers:

- High efficiency
- Linearity

 \rightarrow energy resolution

- Low background
- Well contained avalanches → fine granularity, energy resolution
- Not expensive, robust, ...

Requires:

- Careful choice of the resistive material
- Control of the gas → maintain avalanche mode, avoid saturations
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

sDHCAL technology

Sampling calorimeter

Advantages of Resistive Plate Chambers:

- High efficiency
- Linearity

 \rightarrow energy resolution

- Low background
- Well contained avalanches → fine granularity, energy resolution
- Not expensive, robust, ...

Requires:

- Careful choice of the resistive material
- Control of the gas → maintain avalanche mode, avoid saturations
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

AHCAL technology

Sampling calorimeter

Scintillators + MPPC

Linearity in Phe measurement with MPPC

Advantages of scintillators and MPPC:

- High MPPC gain
- Scintillator linearity
 - Fast resp.

- \rightarrow energy resolution
- Scintillator segmentation → fine granularity, energy resolution
- MPPC Growing field

Requires:

٠

- Careful calibration
- Study scalability
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

 \bullet \bullet \bullet

The prototypes

The AHCAL physics prototypes

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

25/05/18 • 7

AHCAL prototype

- Aim of the physics Prototype:
 - Used to validate the technology
 - Study hadronic showers
 - o establish a reliable and robust calibration chain
- First large-scale application of SiPMs for scintillator calorimetry.
- AHCAL Active Layers:
 - \circ ~ Scintillator tiles with WLS fibers, read out by SiPMs ~
 - \circ 38 m² Layers (5.3 λ i)
 - $\circ~~3x3~$ and $12x12~cm^2$ tiles (0.5 cm)
 - \circ no cooling within active layers
- AHCAL Readout and services:
 - \circ voltage supply, LED system for calibration
 - o front-end electronics, readout
 - \circ 7608 channels
 - o 12 bit analogue readout
 - D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

temperature sensors
 UV LED

JINST 6, P04003 (2011)

AHCAL in test beam

- Test beam campaigns:
 - Since 2006 at DESY, CERN PS and SPS, FNAL
 - Exposed to hadron, muon, electron beams
- Readout:
 - \circ ~ Analogue readout with dedicated ASIC chip ~
 - 18 SiPMs per ASIC
- Calibration system:
 - $\circ \quad \mbox{Integrated calibration and monitoring system}$
 - Based on UV LED
 - Dedicated Boards distribute the LED light and control its amplitude

JINST 6, P04003 (2011)

AHCAL calibration

• Approach:

- calibration of the cell response and cell-to-cell equalization with MIPs
- monitoring of the SiPM gain and corrections for the non-linear response;
- calibration to an energy scale (in GeV) with electromagnetic showers.
- Regular inter-calibration of SiPM gain and electronics using:
 - Low intensity LED light
 - Single photoelectron spectrum
- Linearity corrections of SiPMs:
 - Intrinsically non linear devices
 - o Behaviour well modelled, easily corrected

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

AHCAL calibration

- AHCAL calibration validated using positron beam at various energies
- Illustrates the MPPC linearity control and correction
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

asmas

aboratoire de Physique de Clermont.

JINST 6, P04003 (2011)

AHCAL Energy reconstruction

- Energy resolution can be significantly improved with software compensating technique:
 - EM Origin of deposits characterised by the spatial density → take advantage of the spatial resolution of AHCAL
 - Assigning different weights to these components on an event by event basis
- Use of a local Corrections determined cell by cell:
 - Energy density ρ = energy of a cell / its volume
 - Each cell is weighted by:

$$\omega = p_0 + p_1 \cdot \exp(p_2 \cdot \boldsymbol{\rho})$$

• Parameters $p_{0,1,2}$ determined by minimising:

$$\chi^2 = \sum_i (E_{\mathrm{LC},i} - E_{\mathrm{beam}})^2$$

- Global software compensation, event by event: correct from EM fraction fluctuations
 - D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

25/05/18 •13

AHCAL Energy reconstruction

Clear improvement of the reconstructed energy

AHCAL Energy reconstruction

90

80

-0.04

0

20

30

40

10

Uncorrected: n

Uncorrected: π⁺

- Significant improvement of the energy resolution ۲
- Good linearity ٠

۲

0.22

0.2

(b)

70

60

50

80 90

E_{beam} [GeV]

 \bullet \bullet \bullet

The prototypes

The sDHCAL technological prototype

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

25/05/18 •15

sDHCAL prototype

- sDHCAL Layers:
 - 48 Layers (48 GRPC) + 20 mm Stainless Steel Plates: structure of the modules and absorber
 - \rightarrow 50 plates, ~ $6\lambda_I$
 - \circ 1 m² layers
 - Gas mixture : 93%*TFE* ; 5%*CO*₂ ; 2%*SF*₆
 - HV ~6.9 kV \rightarrow avalanche mode
- sDHCAL Readout:
 - Embedded power-pulsed electronics
 - Semi DIGITAL → 4 states per pad (no signal, 3 levels of signal)
 - \circ 9216 pads (1 cm²) per chamber
 - o 442k channels
 - 144×48 ASICs: Hardroc 2 (64 ch)

sDHCAL in test beam

- Test beam campaigns:
 - 2012, 2015, 2016, 2017 at CERN PS and SPS
 - Exposed to hadron, muon, electron beams
- Use of power-pulsing:
 - Based on (S)PS spill structure
 - First test of the power pulsing with such a detector
- Readout:

Different threshold configurations tested

- DAQ:
 - Based on USB & HTML protocols
 - Online monitoring

sDHCAL efficiency

- **Detector efficiency** determined using muons
- Muons identified as tracks...
- Efficiency exceeds 90% for almost all the layers

sDHCAL: thresholds in use

- Thresholds give a « count » of number of tracks passing a pad
- Used to create categories of hits: EM-like, tracks or hadronic-like
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

sDHCAL: thresholds in use

• Thresholds give a « count » of number of tracks passing a pad

- Used to create categories of hits: EM-like, tracks or hadronic-like
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

sDHCAL Energy reconstruction

Using binary mode:

 Exploit proportionality between energy and total number of hits

 $E_{\rm reco} = A_1 N_{\rm hit} + A_2 N_{\rm hit}^2 + A_3 N_{\rm hit}^3$

• Factors A_i measured by minimizing

$$\chi^2 = \sum_{i=1}^{N} \frac{(E_{\text{beam}}^i - E_{\text{reco}}^i)^2}{\sigma_i^2}$$

 $\circ~$ Using π^+ data at various energies in the minimization

sDHCAL Energy reconstruction

Using semi-digital mode:

• Use the thresholds

$$E_{\text{reco}} = \alpha N_1 + \beta N_2 + \gamma N_3 \quad \text{with } \alpha, \beta, \gamma (N_{\text{hit}})$$

• Factors A_i measured by minimizing

25/05/18 • 22

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

sDHCAL Energy reconstruction

- Comparison between binary and Multi-threshold modes
- Significant improvement of the energy resolution for energies > 30 GeV

 \bullet \bullet \bullet

Imaging validation

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

25/05/18 •24

Track reconstruction

- Take benefit from the fine AHCAL/sDHCAL granularities
- **Reconstruct the tracks** in hadronic showers:
 - Can be be included in the energy reconstruction
 - Can improve PFA by connecting clusters
 - Can be used for In Situ efficiency measurements
- Use of the Hough Transform method

Track reconstruction

- Track reconstruction successfully applied to AHCAL/sDHCAL data
- eg., sDHCAL Efficiency estimate compared to muon data
- EM and Hadronic data compared

Efficiency estimated with HT tracks

Track reconstruction

- HT tracks can be used to distinguish between different hadronic shower models.
- Impact of the modelling of the detector response to be disentangled

25/05/18 • 28

Particle Flow Analysis

- Test PFA performances with real data :
 - $\circ \quad \text{Test the impact of the granularity} \\$
 - Efficiency, Purity, Energy of two adjacent hadrons

- Dedicated PFA algorithms connect hits and clusters
- Reconstruction is efficient: use of a particle PFA with this granularity was established with the prototype
- Critical distance in terms of efficiency

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

Scalability to large experiments

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III

25/05/18 • 29

- Prototypes: Clear establishment of the technologies (scintillator-SiPM or RPC) as a viable calorimetry option in a PFA-based detector
- However scalability issues:
 - Large detector planes including large surface readout
 - Large scale production
- D. BOUMEDIENE (LPC) CEPC WS 2018, Roma III

AHCAL technological prototype

- AHCAL Physics prototype has excellent performances
- But not scalable to a collider detector:
 - \circ external electronics
 - $\circ~$ external LED calibration system
 - Difficult assembly
- Building of a technological prototype scalable to an ILC detector
- Interface Choices:
 - Scintillator Sensor: With WLS fiber or direct (i.e. fiber-less) coupling
 - Sensor PCB: In tile or surface-mounted on PCB
 - Scintillator PCB: Individual tiles or tile arrays
 - Scintillator LED: Light distribution or pulse distribution

AHCAL technological prototype

- Tiles with surface-mount SiPMs suitable for mass assembly
- SiPMs mounted directly on PCB
- Individually wrapped tiles
- Performance of this configuration tested:
 - In dedicated Testbeams
 - Using movable radioactive sources

AHCAL technological prototype

new generation of SiPMs: low noise and much improved sample uniformity

sDHCAL large prototype

- New prototype being produced because:
 - Largest chambers will be $3 \times 1 \text{ m} \rightarrow$ additional challenge
 - Electronic readout, DAQ system should be the most robust
 - Test the mechanical structure
 - Include options as timing

\rightarrow Produce an ILD module 0

sDHCAL mechanical improvments

• Change of gas circulation in large chambers \rightarrow improved homogeneity

• Structure requirement: thickness tolerance under 50 μm and planarity under 500 $\mu m \rightarrow$ achieved with 1st prototype. Use of roller levelling technique to fulfil this requirement with 3 m planes

sDHCAL readout improvements

DIFs link the DAQ to the ASICs:
 1 DIF handles 48 HARDROC2 chips in 1st prototype

 \rightarrow up to 432 HARDROC3 chips for the larger chamber

- Clock sent using HDMI in 1st prototype
 → change to fibre TTC signal
- HARDROC2 in 1st prototype

→ HARDROC3, dynamic range is extended from 15 pC to 50 pC, possibility to control each ASIC individually, fast clock generator inside the ASIC, independent channels with zero suppression, ...

Summary & Outlook

- CALICE HCAL technologies optimised for future leptonic colliders: AHCAL and sDHCAL
- Two physics prototypes were produced
- Test beam data provided reach inputs:
 - \circ Validation of the technologies
 - Bunch of results and ideas
- New prototypes being produced:
 - Will perform the last validation step (feasibility of largest chamber production)
 - Expect for the upcoming year
- sDHCAL was developed for ILD:
 - Further improvements are envisaged beyond ILC
 - Use of the timing, adding a cooling in the case of high inst. luminosity colliders (CEPC, ...)
- Still many ideas to be tested or developed

• D. BOUMEDIENE (LPC) - CEPC WS 2018, Roma III