Status and progress of TPC module and prototype R&D for CEPC

Huirong Qi

Yulan Li, Zhi Deng, Haiyun Wang, Yiming Cai, Liu Ling, Yulian Zhang, Manqi Ruan, Ouyang Qun, Yuanning Gao, Jian Zhang

Institute of High Energy Physics, CAS Tsinghua University Workshop on CepC, Roma, May, 25, 2018

Outline

- Physics requirements
- Status of TPC module R&D
- Status of TPC prototype R&D
- Summary

Physics requirements

TPC as one option Motivation of TPC with MPGD Critical technology challenges

TPC requirements for collider concept

TPC could be as one tracker detector option for CEPC, 1M ZH events in 10yrs $E_{cm} \approx 240$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

TPC detector concept:

- Motivated by the H tagging and Z
- □ ~3 Tesla magnetic field
- ~100 μm position resolution in rφ
 - $\sim 60 \mu m$ for zero drift, <100 μm overall
 - □ Systematics precision (<20µm internal
- Large number of 3D points(~220)
- **Distortion by IBF issues**
- dE/dx resolution: <5%
- Tracker efficiency: >97% for pT>1GeV
- **2**-hit resolution in rφ : ~2mm
- □ Momentum resolution: ~10⁻⁴/GeV/c
- **D** TPC material budget
 - **0.05** X₀ including outer fieldcage in r
 - **D** 0.25 X_0 for readout endcaps in z

Overview of TPC detector concept

Motivation of TPC with MPGDs as readout

- Higher accuracy < 100mm(Overall along the drift)
- Better two track resolution
- Full 3-D track reconstruction
- Precise dE/dX
- High magnetic field (>3T)
- Highly reduced **E**×**B** effect
- Large detectors by industrial process
- Easy assembled using the modules
- Minimal material budget
- Much higher Ion feed back suppression
- Drift time gives the longitudinal coordinate

CEPC Detector for CDR

Feasibility & Optimized Parameters

 $\sqrt{}$ Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ II D)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	31	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV;
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV;

Answer three key issue questions in **CEPC CDR**

Technical challenges for TPC

Ion Back Flow and Distortion :

- ~100 μm position resolution in rφ
- Distortions by the primary ions at CEPC are negligible
- More than 10000 discs co-exist and distorted the path of the seed electrons
- The ions have to be cleared during the ~us period continuously
- Continuous device for the ions
- Long working time

Calibration and alignment:

- Systematics precision (<20 μm internal)
- Geometry and mechanic of chamber
- Modules and readout pads
- Track distortions due to space charge effects of positive ions

Ions backflow in drift volume for distortion

Evaluation of track distortions

700

r/mm

 10^{-}

400

500

600

IBF-0.1%

1000

Drift Length [mm]

- 8 -

2000

500

Options of technical solution

Continuous IBF module:

- Gating device may be used for Higgs run
- Open and close time of gating device for ions: ~ µs-ms
- No Gating device option for Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility

Laser calibration system:

- Laser calibration system for Z-pole run
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Calibrated drift velocity, gain uniformity, ions back in chamber
- Calibration of the distortion
- Nd:YAG laser device@266nm

Continuous IBF prototype and IBF \times Gain

TPC prototype integrated with laser system

High rate at Z pole

- Voxel occupancy
 - The number of voxels / signal
 - 9 thousand Z to qq events
 - 60 million hits are generated in sample
 - □ 4000-6000 hits/(Z to qq) in TPC volume
 - □ Average hit density: 6 hits/mm²
 - **D** Peak value of hit density: 6 times
 - Voxel size: $1mm \times 6mm \times 2mm$
 - 1.33×10¹⁴ number of voxels/s
 @DAQ/40MHz
 - □ Average voxel occupancy: 1.33 × 10⁻⁸
 - Voxel occupancy at TPC inner most layer: $\sim 2 \times 10^{-7}$
 - Voxel occupancy at TPC inner inner most layer : ~2×10⁻⁵ @FCCee benchmark luminosity

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation.

ArXiv: 1704.04401 Mingrui, Manqi, Huirong

Hit map on X-Y plan for Z to qq events

Hit density as a function of radius - 10 -

Requirements of Ion Back Flow

Electron:

- □ Drift velocity ~6-8cm/us@200V/cm
- **•** Mobility $\mu \sim 30-40000 \text{ cm}^2/(\text{V.s})$

Ion:

 10^{3}

 10^{2}

10

 10^{-1}

400

distortion / µm

- Mobility $\mu \sim 2 \text{ cm}^2/(\text{V.s})$
- in a "classical mixture" (Ar/Iso)

$$S_{N} = \sqrt{\left(\frac{\partial f}{\partial x_{1}}\right)^{2} S_{x_{1}}^{2} + \left(\frac{\partial f}{\partial x_{2}}\right)^{2} S_{x_{2}}^{2} + \left(\frac{\partial f}{\partial x_{3}}\right)^{2} S_{x_{3}}^{2}}$$

Standard error propagation function

Deviation [um]

700

r / mm Distortion of as a function of electron initial r position

600

=2 L=200 v=5 (FCC-ee with 0.01% IBF control)

k=5 L=200 v=5 (Fee-ee nominal)

500

k=5 L=2 v=5 (CEPC nomi

Evaluation of track distortions due to space charge effects of positive ions - 11 -

Investigation of IBF study with module

Combination detector IBF control

Test of the new module

- **Test with GEM-MM module**
 - New assembled module
 - □ Active area: 100mm × 100mm
 - **A** X-tube ray and 55Fe source
 - **Bulk-Micromegas from Saclay**
 - Standard GEM from CERN
 - Additional UV light device
 - **Δ** Avalanche gap of MM:128μm
 - □ Transfer gap: 2mm
 - Drift length:2mm~200mm
 - Mesh: 400LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Electrometer/High Resistance Meter

Keithley 6517B

Electrometer/High Resistance Meter, 100aA - 20mA, 10μV - 200V, 100Ω - 10PΩ

Brand:	Keithley
Model No:	6517B

Product Features:

- Measures resistances up to 10180
- 10aA (10×10-18A) current measurement resolution
- Less than 3fA input bias current
- 6 1/2-digit high accuracy measurement mode
- Less than 20µV burden voltage on the lowest current ranges
- Voltage measurements up to 200V with >200TO input impedance
- Built-in +/-1000V voltage source
- Unique alternating polarity voltage sourcing and measurement method for high resistance measurements
- Built-in test sequences for four different device characterization tests, surface and volume resistivity, surface insulation resistance, and voltage sweeping
- Optional plug-in scanner cards for testing up to 10 devices or material samples with one test setup

Measuremnt of GEM-MM module

- Test with GEM-MM module
 - Keithley Electrometers for Ultra-Low Current Measurements: pA~mA
 - Keithley: 6517B
 - Test of cathode of the module
 - Test of readout anode of the module
 - Labview interface of the low current to make the record file automatically

$$IBF = \frac{I_C - I_P}{I_A}$$

** * *	(BELHIOL TRHU) BEHIND ADDULU	1	
166.C/7		175.084M	
LA世界名称			
LOMS -	STOP	1. A A A A A A A A A A A A A A A A A A A	
CIPE		0.000 004	4 199-4
CHE	Bange	200uA 200uA 20	in contra 20nA 2nA
÷ 9600	Range	ZmA	200pA
8/6/2	200 pA	20mA	20p4
C			
- 0			
se l	Read Buffer		
	Fred Buffer +0016.1046-12NADC 15-4752.00.10-Jun		~
- 0 582 € None	Fead Buffer +0016.1046-12NADC,15:47:52:00.10-Jun- 2018-200809RDINS#		~
÷ 0 Siz ÷ None F⊥12	Pred Buffer +0015.1046-12NADC,15:4752.00.19-Jun- 2015.4004948CINISE Current	177 SLA	mit 0
• 0 Si≣ • None • 10 • 10	Pead Buffer +0016.1046-12NADC,15:4752.00,19-Jun- 2016.+004898CNeS# Current 1.91046-11	илуда 30µ-	mit 0
 0 342 ↓ None ↓ 10 ↓ 10 ↓ 10 ↓ 10 ↓ 10 	Pead Buffer +0016.1046-12NADC,15:4752.00,19-Jun- 2016.+004398CDeSe Current 1.91045-11	2017年1月 2019年 211日	mit 0
 ○ ○	Pead Buffer +0016.1046-12NADC,15:4752.00;19-Jun- 2016.+004398CD45# Current 1.91045-11	25p- 25p-	mit 0 The
- 0 Sitz ② None ● 10 ○ 1.0 八田明 ○ 元帝 0	Pead Buffer +0016.104C-12NADC_15:4752.00.10-Jun- 2016.+004898CR45# Cerrent 1.9104E-11	第四回期 30日 25日 11 20日 11 20日 11 20日 11 11 11 11 11 11 11 11 11 1	
○ 0 Sitz ② None 参加校 ○ 1.0 ⑦ 1.	Pead Buffer +0016.104C-12M/DC 15:4752.00.30-Jun- 2016.+004540ReSe Current 1.9104E-11	илидая 30р 25р- 11 20р-	
○ 0 50注 ② None 常止位 ② 1.0 予定利 ② 元 一 0	Pead Buffer +0016.104C-12M/DC 15:4752.00.30-Jun- 2016.+004398CNR5# Current 1.9104E-11	ияладая 30р- 25р- 11 20р- 15р-	
○ 0 State ② None 参加校 ② 1.0 ⑦ 1.0 ⑦ 1.0 ⑦ 2.0 ⑦ 1.0 ⑦ 2.0 ⑦ 1.0 ⑦ 2.0 ⑦ 1.0 ⑦ 2.0 ⑦ 2	Pead Buffer +0016.104C-12M/DC 15:4752.00:30-Jun- 2016.+004398CNR5# Current 1.9104E-11	25p- 25p- 15p- 13p-	

Labview interface of the current with Keithley

GEM-MM module

High voltage diagram of the detector module

- No operation voltage of the GEM-MM detector
- □ Just test current of the primary electrons (~pA)

Ic and Ia

- V_MM set to 400V
- □ V_GEM set to from 150V to 350V
- □ Gain of the hybrid structure detector (GEM-MM) set to 4000-6000

GEM with operation voltage

□ MM with operation voltage

Gain of the hybrid structure detector

Optimization of Et/Ed

- Et/Ed set to 1-1.5 to control the IBF
- □ Ed=200V/cm for T2K at the saturation velocity

- 22 -

Optimization with \mathbf{V}_{GEM}

 \sim T2K gas@VGEM=260V/Vmesh=400V@Et/Ed=1

IBF reaches 1.07‰

Key IBF factor: IBF×Gain

Status of TPC prototype R&D

Drift velocity @Gas/P/T/Operation Uniformity Online calibration Distortion

Parameters of the TPC prototype

- To aim that the small TPC prototype for the estimation of the distortion due to the IBF, and the study of related physics parameters
- To mimic the bunch structure & the ions distortion with UV light and laser split beam

Main parameters

- Drift length: 510mm
- □ Readout active area: 200mm×200mm
- □ Integrated the laser and UV lamp device
- □ Wavelength of laser: 266nm
- **GEMs/Micromegas as the readout**
- Materials: Non-magnetic material (Stainless steel, Aluminum)

Distortion by UV+Laser

- To mimic the bunch structure & the ions distortion with UV light and laser split beam
- □ In the case of ILD-TPC
 - Bunch-train structure of the ILC
 - Power pulsing mode
- □ In the case of CEPC-TPC

Shutter time similar to ILC and CEPC beam structure - 27 -

Divide and reflection mirrors

- Laser wave for the divide and reflection mirrors: 266nm
- Number of the divide trackers: 6 Optimization
- Stainless steel support integrated the laser mirrors
- **Reflection efficiency:**
 - >99%@266nm
- **Reflection position accuracy**
 - 1/30 degree

Area of laser beam in detector

Detector with the laser system - 30 -

Test of mounted board integrated mirrors

Laser splitting mirrors

Angle accuracy: ~1/60 degree 1 minnte

Design of the prototype with laser

□ Support platform: 1200mm×1500mm (all size as the actual geometry)

- **TPC** barrel mount and re-mount with the Auxiliary brackets
- **Readout board (Done), Laser mirror (Done), PCB board (Done)**

R&D of the low power ASIC@65nm

12:30 Progress on the low power readout ASIC for TPC with 65nm CMOS 30'

Speaker: Liu Wei (Tsinghua University)

International cooperation

- CEA-Saclay IRFU group (FCPPL)
 - Three vidyo meetings with Prof. Aleksan Roy/ Prof. Yuanning/ Manqi and some related persons (2016~2017)
 - Exchange PhD students: Haiyun Wang participates Saclay's R&D six months in 2017~2018
 - **Bulk-Micromegas detector assembled and IBF test**
 - **IBF** test using the new Micromegas module with more 590 LPI

- LCTPC collaboration group (LCTPC)
 - □ Singed MOA and joined in LC-TPC collaboration @Dec. 14,2016
 - □ As coordinator in ions test and the new module design work package
 - **CSC** funding: PhD Haiyun jiont CEA-Scalay TPC group(6 months)
 - **Plan to beam test in DESY with our hybrid detector module in 2019**

Manpower and activities

- **TPC** detector **R&D** @IHEP (2016~2020)
 - Huirong Qi,
 - Yulian Zhang (PhD,IHEP), Haiyun Wang(PhD,IHEP), Zhiwen Wen(PhD,IHEP)
 - **Prof. Jin Li**
 - □ Funding from MOST and NSFC(~3.5 Million RMB)
- □ Electronics R&D &Tsinghua (2016~2020)
 - Zhi Deng
 - Yiming Cai(PhD,THU), Zhao Mingrui (Master, THU) and three PhDs in electronics lab
 - **Prof. Yuanning Gao, Prof. Yulan Li**
 - □ Funding from NSFC (~2.0 Million RMB)
- □ Inhabitation of IBF using graphene @Shandong Univ. (2016~2019)
 - Zhu Chengguang
 - □ Zhao xiao (PhD,SDU)

Further R&D

Continuous IBF module for CEPC:

- No Gating device options used for Higgs/Z pole run
- Continuous Ion Back Flow due to the continuous beam structure (Developed in IHEP)
- α ~100 μm position resolution in rφ
- Key factor: IBF×Gain=5 and leas than (R&D)
- Low discharge and spark possibility

Prototype with laser calibration for CEPC :

- Laser calibration system integrated UV lamp
- Calibrated drift velocity, gain uniformity, ions back in chamber
- Prototype has been designed with laser (Developed in IHEP and Tsinghua)_
- Nd:YAG laser device@266nm, 42 separated laser beam along 510mm drift length

Collaboration:

- Signed MOA with LCTPC international collaboration on 14, Dec., 2016
- New design detector collaborated CEA-Saclay

Continuous IBF prototype and IBF × Gain

TPC prototype integrated with laser system LCTPC Collaboration Members

The map below shows the LCTPC collaboration member institutes as listed in the second Addendum of the Memorandum of Agreement from 2008.

Joint LCTPC international collaboration

Thanks.