High Energy CEPC Injector Based on Plasma Wakefield Accelerator

Presenter bhih-Hao Pai

Tsinghua University

Workshop on the Circular Electron-Positron Collider May 25, 2018 Rome, Italy

A joint effort of IHEP and Tsinghua

Institute of High Energy Physics (IHEP)

Jie Gao, Yongsheng Huang, Dazhang Li, Dou Wang, Cai Meng, Tianjian Bian, Zhenchao Liu, Yiwei Wang

• Tsinghua University

Wei Lu, Shiyu Zhou, Yue Ma, Jianfei Hua, Chih-Hao Pai, Shuang Liu

Outline

Plasma based wakefield accelerator (PWFA)

➢ Key accelerator physics for PWFA

Plasma based injector for CEPC

- Boundary conditions
- Overall concept design
- Preliminary design parameters

Plasma Based Wakefield Acceleration

Wake

Huge gradient (~100GV/m) + Tiny structures (~10-100um)

T. Tajima and J. M. Dawson PRL (1979) LWFA P. Chen, J. M. Dawson et.al. PRL (1983) PWFA

Important progress in past decade

Key physics issues for a plasma accelerator

From "Acceleration" to "Accelerator"

> The structure issue:

Wake excitation for given drivers

> The energy spread and efficiency issue:

Beam loading, pulse shaping, transformer ratio

> The stability issue:

Driver evolution, matching, guiding, instabilities

> The injector issue:

Self-injection, wave breaking, controlled injection

> The overall design and staging issue:

Parameter optimization for a plasma based accelerator to match requirements of beam parameters, staging, external injection

Beam loading efficiency and energy spread

High efficiency (near 100%) + Uniform acceleration

M. Tzoufras, W. Lu et al., PRL (2008), PoP [invited] (2009)

Verified through Experiment

30-50% energy conversion efficiency

Nature 515 (2014)

0.1% level energy spread by plasma dechirper

- Theory and simulation show that a low density plasma dechirper can be used to reduce the energy spread down to 0.1% level
- Preliminary experiments have been done to confirm the effect of dechirping

Wu, Y. *et al.* A preliminary experimental study of energy chirp reduction by a plasma dechirper. *Proc. IPAC2017* **TUOBB1,** 1258–1260 (2017)

High Transformer Ratio PWFA

Transformer ratio: TR=E⁺/E⁻

- Lower Drive Beam Energy
- High efficiency
- TR=5
- 1% energy spread

Example: shaped bunch by photo-injector of Linac

Lu et al., PAC 2009, Huang et al., IPAC17

Plasma Based Injector for CEPC

- The boundary condition
- Overall concept design
- Driver/trailer beam generation through Photo-injector
- HTR PWFA with good stability (single stage TR=3-4, Cascaded stage 6-12, high efficiency)
- Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)

CEPC CDR Linac parameters

Parameter	Symbol	Unit	CDR
e⁻ /e⁺ beam energy	E_{e}/E_{e+}	GeV	10
Repetition rate	f_{rep}	Hz	50
e ⁻ /e ⁺ bunch population	Ne-/Ne+		6.25×10 ⁹
		nC	1.0
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	mm∙ mrad	<0.3
e ⁻ beam energy on Target		GeV	4 (2)
e ⁻ bunch charge on Target		nC	10

Boundary Conditions

- Beam average power (kW 100Hz)
- Beam charge per-bunch (nC)
- Beam energy spread (0.2%)
- Beam geometric emittance (<0.3mm mrad)</p>
- Positron generation and acceleration

Overall Concept Design

- Driver/trailer beam generation through Photo-injector
- HTR PWFA with good stability (single stage TR=3-4, Cascaded stage 6-12, high efficiency)
- Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)

Electron Acceleration

HTR PWFA + Energy Dechirper

Electron Acceleration

HTR PWFA + Energy Dechirper

Electron Acceleration

HTR PWFA + Energy Dechirper

Output parameters	HTR PWFA
Trailer energy $E_t(GeV)$	45.5
Trailer emittance $\epsilon_t(nm \ rad)$	1.1
TR	3.55
Energy spread $\delta_E(\%)$	0.7
Efficiency (driver -> trailer)	68.6%
Plasma length (m)	1.87
Output parameters	Dechirper
trailer energy $E_t(GeV)$	45.3
trailer emittance $\epsilon_{\ell}(nm \ rad)$	1.89
Energy spread $\delta_E(\%)$	0.2
Energy spread $\delta_E(\%)$ Overall Efficiency	0.2 59.4%

7nC Shaped bunch by S-band photoinjector and LINAC

Simulation data by Zhen Wang of SINAP

TR = 3.5

Positron generation

Compression ratio:	
BCI: 8.2	
BCII: 4.4	
BCIII: 3.3	

Output parameters	
Final energy $E(GeV)$	3.4
Energy spread $\delta_E(\%)$	2.0
Beam length $\sigma_z(\mu m)$	15

By Dou Wang

Positron self-loading

Hollow plasma channel

Corde, S, et al. Nature (2015).

Gessner, Spencer, et al. Nature Communications (2016).

Uniform acceleration + High efficiency + TR=1

By Shiyu Zhou

Uniform acceleration + High efficiency + TR=1

Energy Dechirper

Beam Combine+ Energy Dechirper

Output parameters	Acceleration
trailer energy $E_t(GeV)$	45.3
trailer emittance $\epsilon_t(nm \ rad)$	1.0
TR	1
Energy spread $\delta_E(\%)$	0.29
Efficiency (driver -> trailer)	46.82%
Plasma length (m)	~22
Output parameters	Dechirper
trailer energy $E_t(GeV)$	45.2
trailer emittance $\epsilon_t(nm \ rad)$	1.0
Energy spread $\delta_E(\%)$	0.14
Overall Efficiency	45.4%
Plasma length (m)	1.47

Cascaded HTR PWFA

e

- The 1st stage
- Two shaped bunches (2.5ps 25nC, 500fs 5nC)
- ➤ TR=2 or 3
- Efficiency (60%)
- The 2nd stage
- Controlled injection for e (100fs 1nC or 2nC)
- ➤ TR=2 or 3
- Single stage efficiency (60%)
- Overall TR=(1+TR1)*TR2
- Overall efficiency Q3(1+TR1)*TR2/(Q1+Q2)=40%
- The positron stage
- Combining e+ with e- (50fs 1nC)
- TR=1 Single stage efficiency (~50%)
- Overall efficiency for positron 20%

Summary

- e-/e+ acceleration to 45 GeV in HTR PWFA with single stage TR=3.5 is possible (10GeV electron beam driver)
- e-/e+ acceleration to 100 GeV level in Cascaded HTR PWFA with TR=10 is possible (10GeV electron beam driver with higher charge)
- Energy spread of 0.2% could be achieved by post processing using a plasma dechirper
- Preliminary experimental tests could be performed in near future at FACETII of SLAC

Thank you for your attention!

Summary

- Single stage HTR PWFA
- ➢ 45GeV
- ≻ TR=3~3.5
- Efficiency (60%/30%)
- Cascaded HTR PWFA
- ≽ 120GeV
- ≻ TR=3
- Efficiency (40%/20%)

Plasma based colliders

Layout of 1 TeV PWFA Linear Collider

Leemans & Esarey, Physics Today, March 2009

Mark Hogan, SLAC-PUB-15426, in 2013 29

Transformer Ratio: limits energy gain in PWFA

Transformer Ratio:
$$R = E_+/E_- \le 2$$

✓ Limits energy gain in PWFA

✓ Under general considerations (symmetric bunches)

Drive beam energy depleted after distance:

 $L_d \sim \gamma_b m_e c^2 / eE_-$

Energy gain of witness bunch:

$$\Delta \gamma m_e c^2 \sim eE_+ L_d = R\left(\gamma_b m_e c^2\right)$$

Higher transformer ratios achieved using shaped (asymmetric) bunches:

Triangular beam: $R = \pi (L_b / \lambda_p)$

Bunch train:

$$R \le 2\sqrt{M_b}$$

Improved transformer ratio in nonlinear blowout regime using ramped bunch

$$R \sim \frac{L_b}{R_b} \left(\frac{n_0}{n_b}\right)^{1/2}$$

W. Lu et al., PAC, 2009

P. Chen et al., Phys. Rev. Lett., 1985